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A Double Bootstrap Method to Analyze Linear Models With

Autoregressive Error Terms

Scott D. McKnight
Toledo Hospital

Joseph W. McKean and Bradley E. Huitema
Western Michigan University

A new method for the analysis of linear models that have autoregressive errors is

proposed. The approach is not only relevant in the behavioral sciences for analyzing

small-sample time-series intervention models, but it is also appropriate for a wide

class of small-sample linear model problems in which there is interest in inferential

statements regarding all regression parameters and autoregressive parameters in the

model. The methodology includes a double application of bootstrap procedures.

The 1 st application is used to obtain bias-adjusted estimates of the autoregressive

parameters. The 2nd application is used to estimate the standard errors of the

parameter estimates. Theoretical and Monte Carlo results arc presented to demon-

strate asymptotic and small-sample properties of the method; examples that illus-

trate advantages of the new approach over established time-series methods are

described.

Data collected under a time-series design are fre-

quently encountered in many applied and theoretical

areas. Although there are many types of time-series

design, the interrupted time-series quasiexperiment is

perhaps the most familiar to behavioral science re-

searchers. This frequently encountered version of

time-series design has two phases. The first phase is

called the baseline phase and is followed with the

introduction of the second phase, an intervention of

some type. All observations obtained subsequent to

the introduction of the intervention condition consti-

tute the intervention data. Because the conditions pre-

sent during the baseline phase are interrupted by the

introduction of the intervention condition, the term

interrupted time-series quasiexperiment is often used

to label this type of study. An examination of recent
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methodological literature reveals many expository

presentations and recommendations for the increased

use of this design (e.g., Cook & Shadish, 1994; Glass,

1997; Marcantonio & Cook, 1994; Mohr, 1995;

Rushe & Gottman, 1993).

The main purpose of the statistical analysis is to

provide an evaluation of possible differential perfor-

mance under the two conditions of the time series. A

useful framework for this analysis is often a linear

model. Although pure autoregressive integrated mov-

ing average (ARIMA) intervention models are fre-

quently recommended for the analysis of interrupted

time-series data, it has recently been demonstrated

that appropriate forms of conventional regression

models often fit such data adequately (Huitema &

McKean, 1998). This result is especially important

when sample size is small (i.e., N < 50) because con-

ventional ARIMA modeling is not generally recom-

mended for small samples (see, e.g., Box, Jenkins, &

Reinsel, 1994, p. 17). Unfortunately, however, it is

not unusual for the errors of a conventional regression

model applied to time-series data to be autocorrelated;

an alternative regression model that acknowledges the

autocorrelated errors should be considered in this

case.

In this article we are concerned with linear models
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whose errors follow an autoregressive time-series pro-

cess. Models of this type are described in the statis-

tical literature under various headings such as com-

bined transfer function-disturbance models, dynamic

regression models, and models with regression terms

and time-series errors (Box et al., 1994; Fuller, 1996).

These models have considerable potential in the be-

havioral sciences for the analysis of interrupted time-

series quasiexperiments, but, as with ARIMA, they

require a reasonably large sample size (N a 50).

Hence, both ARIMA and dynamic regression models

are likely to be poor choices if the sample size is

small.

This is the situation in which the method of the

present article may be of interest; it was specifically

developed and evaluated for linear regression inter-

vention applications having both small sample size

and autocorrelated errors. Although the focus of the

methodology presented here is on simple, interrupted

time-series designs having the intervention(s) mod-

eled in the design matrix, our development can be

generalized for more complex linear models with

time-series errors. Extensions can include polynomi-

als used to model trends over the different phases of

the design (each phase may have its own polynomial

model) and covariales of an appropriate form. Be-

cause models of the type mentioned here require re-

gression parameters as well as autoregressive param-

eters, the goal of our work is to provide valid

inferential procedures for both types of parameter.

Existing approaches are available to provide hypoth-

esis tests and confidence intervals on the regression

parameters, but they have not been found to be suc-

cessful in the small sample size situation.

Popular approaches for time-series regression

analysis include the Cochrane-Orcutt (Cochrane &

Orcutt, 1949) and Prais-Winsten (Prais & Winsten,

1954) versions of generalized least squares (GLS), the

Durbin two-stage procedure (Durbin, 1960), and,

more recently, maximum-likelihood estimation. (Ex-

amples of the application of GLS to interrupted time-

series data can be found in Berry & Lewis-Beck,

1986). Except for maximum-likelihood estimation,

these methods first obtain estimates of the autoregres-

sive parameters from the residuals of an initial fit of

the linear model (first stage) and then, on the basis of

these estimates, refit the linear model (second stage).

Unfortunately, it has been shown in the econometrics

literature that conventional GLS procedures produce

unacceptably high Type I error rates when applied to

small samples (e.g., Johnston, 1984). Although re-

searchers sometimes suggest that the departure of em-

pirical Type I error from the nominal value can be

attributed completely to bias in the autoregressive co-

efficient estimators, we demonstrate that in the small-

sample case the problem has two sources: (a) the bias

of the initial estimates of the autoregressive param-

eters and (b) error variance estimation issues that are

not solved through improved estimation of the autore-

gressive parameters.

Evidence of the first problem is presented in Table

1. This table contains partial results of a large Monte

Carlo study we performed to investigate the perfor-

mance of the well-known Prais-Winsten version of

GLS in the context of a two-phase intervention model

with first-order autoregressive errors (u,; defined as

pw,_i + er t = 1,. . . , N, where the errors e, are

independent and normally distributed with a mean of

0 and a variance of 1). The design matrix associated

with this model is of the form shown here as Equa-

tion 1;

X =

-1 1
1 2

1 3

1 «,

1 « j + 1

1 n, + 2

1 «, + 3

_ 1 n, +n2

0

0

0

0

1

1

1

1

0 "

0

0

0

0

1
2

n2 - 1 _

(1)

An inspection of the empirical mean values in

Table 1 (based on 5,000 simulations) reveals a large

negative bias in the estimates of p associated with the

Table 1

Empirical Means and Variances of pLS

and First-Order Autoregressive Errors

Under Equation 1

PLS

Actual p M

.90 .391

.80 .360

.70 .323

.50 .211

.30 .083

.20 .015

.00 -.135

-.30 -.360

Variance

.029

.030

.032

.032

.030

.029

.028

.024

Note. Mean values are based on 5,000 simulations. N = 30 (n,
n2 = 15).
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Prais-Winsten procedure when N = «, + #2 = 30 for
the entire sample. The Prais-Winsten estimator
for p is

rr

r=2
KLS ~

I,''
1=2

where r, is the least squares (LS) residual from the fit
of the responses (y,) using the design matrix in Equa-
tion 1.

Figure 1 illustrates the problem of inflated Type I
error resulting partially from using the biased estima-
tor p:LS , in the Prais-Winsten transformation. It can
be seen that Type I error greatly exceeds the nominal
level (.05) for tests on each of the four parameters in
the model. Parameters 30, (J,, (32, and |J3 are the in-
tercept, first-phase slope, level change, and slope-
change parameters, respectively. Because the degree
of departure of the empirical value from the nominal
value increases greatly with positive p, it is clear that
the Prais-Winsten procedure is not effective in mod-
eling autocorrelation among the errors when analyz-
ing a short time series.

Bias adjustments to pLS and other traditional esti-
mates have been suggested (e.g., Beesley, Doran, &
Griffiths, 1987; Griliches & Rao, 1969), but these
adjusted estimators only modestly improve on the re-
sults displayed in Figure 1 (Judge, Griffiths, Hill, Lut-
kepohl, & Lee, 1988; McKnight, 1994). More effec-
tive methods are required for bias reduction in the
estimation of both the autoregressive coefficients and

Figure 1. Prais-Winsten empirical Type I errors. Empiri-
cal as are based on 5,000 simulations of N = 30. The four
parameters plotted at each level of p are, in order, as fol-
lows: intercept ((30), first-phase slope ((3,), level change
((il2), and slope change (P3). Open boxes correspond to left-
tailed tests and filled boxes to right-tailed tests. The hori-
zontal line corresponds to a nominal a of .05.

the standard errors of the coefficients in the beta vec-
tor. Bootstrap methodology (Efron & Tibshirani,
1994) lends itself to problems of this nature.

Recent work has been reported using bootstrap
methods to control the levels of the test for zero slope
in linear-trend models with autoregressive errors.
Nankervis and Savin (1996) and Woodward, Bottone,
and Gray (1997) presented bootstrap procedures for-
mulated under a simple linear model constrained by
the null hypothesis of zero slope. Sun and Pantula
(1996) have evaluated the Woodward et al. procedure.

The goal of our bootstrap procedure is somewhat
more complex than that of the procedures mentioned
above. We are concerned with inference (confidence
intervals as well as tests of general linear hypotheses)
for regression parameters as well as autoregressive
parameters. The estimation combines a two-stage
Durbin-type approach (Durbin, 1960; Fuller, 1996,
chap. 9) and a bootstrap procedure similar to one de-
veloped by Freedman (1984). This approach leads to
natural estimates of the degree of bias of the autore-
gressive parameters and, ultimately, to correction
terms for these parameters. This process can be iter-
ated until the incremental change in the autoregressive
estimates is small. These new autoregressive esti-
mates are then used to obtain Durbin-type estimates of
the regression parameters and bootstrap estimates of
their standard errors. Details of the method are pre-
sented in subsequent sections of this article.

Method

Model and Notation

Consider the general model

y, = x/P + B,. t = },..., N (2)

where xf is a (p + 1) x 1 vector of prespecified design
regressors, the error term u, follows a stationary au-
toregressive (k) series,

and the errors e, are independent and identically dis-
tributed with a mean of zero and finite variance.
Hence, we are assuming homoscedastic errors. We
further assume that the model contains an intercept
(i.e., let *fl - 1 for all t). Our interest is in the esti-
mation of the autoregressive and regression param-
eters and inference concerning these parameters.

The model in Equation 2 is the second model dis-
cussed by Durbin (1960) and is also discussed by
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Fuller (1996, p. 530). Note that we can rewrite Equa-

tion 2 equivalently as Equation 3:

Suppose, for the moment, the vector of autoregressive

parameters p = (p,, . . . , pt)' is known. Consider the

transformation

w;(P) = ",-Plx,-i ----- Pkx,~k (5)

for t = k + I, . . . , N. Under normal errors the LS

estimate of P based on the regression of vr(p) on w,(p)

is optimal, except for end effects. Under regularity

conditions, if the errors are not normally distributed,

the LS estimate of P is asymptotically normal (Fuller,

1996).

Of course in practice, p is not known. The Coch-

rane-Orcutt and Prais-Winsten estimated GLS proce-

dures make use of this transformation on the basis of

initial estimates of p (see, e.g., chap. 12 of Neter,

Kutner, Nachtsheim, & Wasserman, 1996). Our boot-

strap procedure uses the Durbin two-stage procedure

for estimation of the regression and autoregressive

parameters; hence, we briefly describe this procedure.

Stage I. Equation 3 is fit using ordinary LS to

obtain estimates of both the autoregressive parameters

and the regression coefficients simultaneously. Let p1

denote the Durbin estimate of the vector of the au-

toregressive parameters.

Stage 2. Perform the transformations in Equa-

tions 4 and 5 using p[ to form v(pj) and w,(p,). Note

that w/p|) is a (p + 1) x 1 vector. Then obtain the LS

fit of v,(pt) on w,(p,). Denote the LS estimates by y.

Finally, let p, be the (p + 1) x 1 dimensional vector

with components

if j = 0

The estimator (3, is a consistent estimate of P (see

Durbin, 1960). Durbin also showed that the asymp-

totic distribution of V/j(pj - p) is the same as the LS

estimate of P when the actual values of the autore-

gressive parameters p,, . . . , pk are known.

Bootstrap Procedure

For ease of discussion, we define our bootstrap pro-

cedure for Equation 2 with first-order autoregressive

(AR (!]) errors; thus, k = 1 here. Our discussion,

however, is general and holds for AR(t). The basic

idea of the bootstrap is to generate replicate series of

the original time series to estimate bias in the Durbin

estimate of p and standard errors of the Durbin esti-

mates of p. To generate the replicate series, first ob-

tain the Durbin two-stage estimators p j and p, as

discussed in the previous section. Next, form the re-

siduals e, as

= y, - V\y,-\ - (*/ - h t = 2,...,N.

(6)

The residuals e, are centered and rescaled by the fac-

tor -*I(N - k - p)/[N - 2(k + p)] to counter possible

deflation caused by the fitting (see Stine, 1987). We

shall denote these centered and rescaled residuals by

es2, . . • , e,N, where i denotes scaled. Let FN-t denote

the empirical cumulative distribution function (cdf) of

ex2, . . . , eM', Fjv_i has mass l/(N — 1) at each £„. For

general autoregressive k, N - 1 is replaced by N — k.

For each bootstrap replicate, we obtain a random

sample, with replacement, of size N from FN, say,

esl, . . . , e,N. We then form the series

yf = Pi#. -(x,-xM)'P, +e*, t = 2 ..... N, (7)

where yl is used to start the series. Note that the

empirical distribution with cdf FN has a mean of zero

and constant variance and that the residuals e*, are

selected randomly from FN. Hence, this bootstrap rep-

licated series satisfies the assumptions of the Durbin

estimation process.

Let NB denote the number of replicated series

(Equation 7), that is, the size of the bootstrap. For the

i'th replicate, let p* and pf denote the Durbin two-

stage estimates of p and p. Note that these estimates

are asymptotically unbiased for p, and P,.

The main purpose of the bootstrap is to gather in-

formation about the bias in the estimate of p. The

bootstrap resamples from a population with autocor-

relation P]. Hence, for each bootstrap replication pf -

p, is a random variable whose expectation approxi-

mates the true bias. As our measure of bias then, we

take the average of these terms, that is,

This bootstrap procedure is similar to a method

proposed by Freedman (1984) for bootstrapping two-

stage LS estimates in stationary linear models. One of

Freedman's results is that his bootstrap estimates are

asymptotically equivalent to the LS estimates based
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on the transformations in Equations 4 and 5 using the

true p. Although Freedman's main model is similar to

our Equation 2, the independent variables in our

model are lagged. For the subsequent discussion we

refer to Freedman's model as a Type 1 model and to

our Equation 2 as a Type 2 model; Durbin (1960)

discussed both types. Durbin' s first model is a Type I

and his second model is a Type 2. Durbin showed that

his two-stage estimation scheme for Type 2 models is

asymptotically equivalent to LS estimation for Type I

models. Estimates based on the two-stage scheme are

asymptotically equivalent to optimal LS estimates

based on the transformations in Equations 4 and 5

with known p under the assumption of normality. As

we noted above, the bootstrap model satisfies the as-

sumptions of the Durbin estimation process; hence, a

similar equivalence can be made between the boot-

strap for models of Type 2 and for those of Type 1 .

Estimates based on Freedman's bootstrap, though, are

asymptotically equivalent to LS estimates of models

of Type 1. Hence, it follows from Durbin's equiva-

lence and Freedman's theory that the bootstrap esti-

mates described have the same asymptotic properties

as the LS estimates based on a known p. This con-

clusion does not, however, speak to the small-sample

properties of the bootstrap estimates.

We have discovered that one iteration of the boot-

strap does not suffice to correct the bias of the esti-

mates of p. Therefore, we propose the following it-

erative procedure:

1. Start with the Durbin estimates p, and p( of p

and p, respectively.

2. Use the bootstrap to calculate b$K, Let p2 = p,

— Solas' and use p2 in Durbin's second step to

calculate j}2-

3. Perform the bootstrap again using p2 and P2 in

Equation 7 to obtain replications, as we did with

p, and P| in Equation 6. Calculate b^ as

Let p3 = pi - A MM- and use p3 to calcu-

late the Durbin estimate p3.

4. Repeat Step 3 up to m times or until Ip, - p^_,l <

e where,/' = 2, . . . , m for some specified e > 0.

We recommend setting 6 at .01. We denote the

bootstrap bias-adjusted estimate of p by pF = p,

- bjj," and the final Durbin estimate of P by

PF, where the subscript F stands for final. Be-

cause of the stationary assumption made earlier,

if PF — 1 or pF s -1, we set pF equal to .99 or

p> equal to -.99.

After obtaining the final estimates, a residual analy-

sis should be performed on eFl to evaluate the ad-

equacy of the fit:

(8)

Inference

After fitting the model and conducting a residual

analysis, we proceed with inference on p and p. For

relatively short series (N < 100), the bias-adjusted

estimate of p may nevertheless lead to underestima-

tion of the standard errors [S£(J3F(,), where k ~

1 , . . . , pj and thus to inflation of the test statistics.

Thus, when the sample size is small we propose to

produce i'£(fJFt) by mimicking the variation in pF by

using the Durbin estimates, p*, obtained from NB

replicate series based on bootstrap methodology. Note

that this is the second application of the bootstrap.

That is, the fitting procedure described above is our

first bootstrap for this problem. The inference we dis-

cuss next is based on our second bootstrap. As in the

presentation of the first bootstrap, our discussion is

for the case of the AR(1) model, that is, where k = 1 .

To this end, NB bootstrap replicated series are cre-

ated using pF and PF in Equation 7. That is, the boot-

strap replicated series is

i -(x,-xM)'pF-K?* r=2, ..., (9)

We have found that using y, to start this series, as we

did for the series in Equation 7, results in underesti-

mation of the variance of the intercept. Instead, we

recommend a starting value chosen at random from

the original time series; this alleviates the underesti-

mation of the variance of the intercept without chang-

ing the other regression parameters' bootstrap stan-

dard errors. Stine (1987) proceeded the same way in

choosing a starting value for his bootstrap method for

time series. The bootstrap errors ef, are randomly se-

lected with replacement from the residuals in Equa-

tion 8. We calculate the Durbin estimates, Pf , for i =

1, . . . ,NB. Because they are Durbin two-stage esti-

mates, the random variables pf are consistent for pF.

These bootstrap estimates can then be used to estimate

die variance-covariance matrix of pF in the usual

way, that is

(10)Var(PF) = — (Pf - PfXPf -
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There are other bootstrap estimates of this variance-

covariance matrix. A common method is to use the

average of the p? in place of |JF. In our empirical

studies, we have found that using the averagejed to

more liberal confidence procedures than using pF. As

our empirical results below show, the empirical cov-

erages using Equation 10 are quite close to nominal

confidence levels over the situations that we exam-

ined.

Inference for P can be based on the bootstrap vari-

ance-covariance matrix in Equation 10. But in our

simulation studies, presented below, we have found

that a standardized version motivated by the percen-

tile t method of Hall (1988) has better properties. For

the ;th replicated model i = 1,. . . , NB (Equation 9),

let e* denote the vector of residuals. Denote the mean

square error of these residuals by

Let MSE(ef) denote the mean square error based on

the residuals in Equation 8. Then, our modified esti-

mate of the variance-covariance matrix of (JF is VM,

which is defined as

MSE(ef)
(U)

Using Equation 11 as our variance-covariance esti-

mator of PJH tests of general linear hypotheses, H0:

Mp = 0 versus HA: Mp ^ 0, for a specified matrix

M, can be conducted. In particular, a test of H0: fy =

0 can be based on the t statistic

(12)

Mjj

As the simulation study in the subsequent section

shows, comparing (, with (-critical values based on N

— p degrees of freedom gives reasonable empirical

levels. Likewise, confidence intervals for $t can be

formulated as

Turning to inference for the autoregressive param-

eters, we proceed as we did with p. Note that the

estimate of p based on a replicate series will be bi-

ased; hence, we can estimate this bias by running the

four-step bootstrap procedure for each replicate se-

ries. Thus, approximate confidence intervals for p are

constructed on the basis of the bootstrap bias-adjusted

estimate p> and a bootstrap standard error estimate,

SjjF. To calculate Sf,F, p> and $F are used to construct

NK replicate series as described above. Then the boot-

strap procedure (Steps l^t) is used to get bias-

adjusted estimates, piF for each replicate series, where

/ = 1 , . . . , NB. As with standardizing the regression

parameters (Equation 11), we have found it best to

standardize each replicate by the mean square error of

the replicate residuals. Hence, our estimate of the

standard error of pF is given by

i ^(fv-iv:
V=VA/S£(M[^SMS£(6:

•£]">
$)J '

The confidence interval for p is then

(13)

Simulation results presented in the next section reveal

that these confidence intervals provide good empirical

coverage for p.

Monte Carlo Studies

We carried out two Monte Carlo studies to compare

our bootstrap procedure with alternative approaches,

using the two-phase interrupted time-series model dis-

cussed earlier (see Equation 1 for the form of the

design matrix) in both studies. In our first study we

compared the bootstrap with the Durbin estimation

procedure and with a GLS procedure for which the

values of p were assumed to be known. In the second

study we compared the bootstrap with the maximum-

likelihood ARIMA procedure. The particular imple-

mentation we chose was the SAS (SAS Institute,

1987) ARIMA procedure. We refer to this as the

ARIMA procedure in the subsequent text. Method-

ological details for both studies are described below.

Study I. The model y, = x'p + u, (Equation 2),

where x, is the rth row of the design matrix given by

Equation 1, defines the deterministic parameters of

interest. The error term u, was modeled as a first-order

autoregressive process, u, — p«,_] + et, where the et

represents the independent and identically distributed

normal variates with jj. = 0, a2 = I , and Ipl < 1.0 (a2

= variance). For each specified value of p and series

length N, 5,000 interrupted series were generated. The

phase lengths were equal («, = n2). The e,s were

generated as independent normal deviates from a pair

of independent uniform variates as proposed by Mar-

saglia and Bray (1964). The uniform variates were

generated by the portable Fortran generator UNI de-
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veloped by Kahner, Moler, and Nash (1988). The first

simulated autoregressive series {«,},- was started after

the generation of 300 variates of the form v, = pv^

+ €j, where ;' = 1, .. ., 300. Letting «0 = v300, the

first simulated autoregressive series {«,}, was gener-

ated as «,. = pw,_, + e,, where; = ! , . . . ,« . Then, this

entire process was repeated for each of the 5,000 se-

ries. Hence, between each generated series 300 ig-

nored variates were generated. Thus, each simulated

series began with a random normal deviate with \L =

zero, cr2 = I/(I - p2), and there was assurance that

the last observation of one simulated series was vir-

tually uncorrelated with the first observation of the

next simulated series.

The centered model was used in the second stage of

Durbin's estimation procedure. The centered observa-

tions and the centered design matrix are >•,., = y,-y

and x .̂, = (x,, - jc,, x,2 - x2, xl3 - Jc3), respectively.

The Phase I intercept parameter, P0, was then esti-

mated by Po = v - Pi*, - P^j - PjSj.

Study 2, The second study involved a comparison

of the properties of our bootstrap procedure with those

of the ARIMA procedure. We used the latter to obtain

maximum-likelihood estimates of the parameters of

Equation 2 with Equation 1 under both the null model

(i.e., Po = P! = P2 = P, = 0) and the alternative

model (i.e., P0 = p, = 0, P2 = 1.0, P3 = .5) in order

to evaluate Type I error and power, respectively. Each

simulated series had 15 preintervention observations

(«,) and 15 postintervention observations («2). The

simulation size was 5,000. The values of the autore-

gressive parameter p associated with the error terms

of the simulated series (defined as «, = p«,_[ + et)

were randomly chosen from the interval (0, 1); the

normal deviates e, were generated from the SAS func-

tion NORMAL to have zero mean and unit variance.

The SAS model, ARIMA, was fit using the following

SAS code:

identify var = y crosscor = (xl x2 x3 x4);
estimate p = 1 input = (xl x2 x3 x4) method =
ML noconstant;

where xl-x4 denote the columns of the design matrix

for the two-phase intervention design.

Results

Study 1

Table 2 shows the results of Study 1 with respect

to the confidence interval coverages of p based on

the bootstrap confidence interval in Equation 13. Be-

Table 2

Empirical Confidence Interval Coverages of the Bootstrap

Confidence Interval in Equation 13 for p

Note,
lions

P

.90

.80

.70

.50

.30

.20

.10

.00

-.30

Confidence interval
of N = 30.

Nominal

90%

.903

.926

.941

.890

.911

901

.913

.926

.931

coverages are

confidence

95%

.940

.954

.967

.957

.948

.960

.948

.962

.966

based on 1,000 Simula-

cause this is a nested bootstrap procedure (i.e., a boot-

strap within a bootstrap) and therefore is extremely

computer intensive, the results in Table 2 are based on

only 1,000 simulations for N = 30. The empirical

coverages are quite close to the nominal confidence

coefficients for both the 90% and 95% intervals.

Tables 3 and 4 display the empirical means and

variances of the initial Durbin estimator of p (p,) and

the bootstrap bias-adjusted estimator (pF) for series of

N = 20, 30, 50, and 100. As shown in these tables,

the bootstrap bias-adjusted estimates are considerably

less biased than the initial estimates of p, and for N —

100 they are nearly unbiased.

Figures 2 through 5 present, for N = 20, 30, 50,

and 100, empirical results of the hypothesis tests H0:

Pt = 0, where k = 0, . . . , p, at nominal ct = .05,

using our bootstrap procedure. The true fy here are all

zero and hence, Figures 2 through 5 give the empirical

Type I errors. The standardized test statistics of Equa-

tion 12, tj, were used for these results. In all of these

figures we see that Type I error rates for |32 are ap-

proximately nominal. The Type I error rates for

the hypothesis tests for the parameters |3U, (3,, and

P3 are close to nominal, with some inflation when p

is near .90.
We should compare power only for procedures

whose Type I error rates are close to nominal values.

Thus, we do not use the Prais-Winsten GLS proce-

dure based on the Durbin estimate of p. Instead we

choose the Prais-Winsten GLS procedure based on

the true value of p in the transformation. We denote

this procedure by TV, for true value, so as not to

confuse it with the Prais-Winsten GLS procedure
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Table 3

Empirical Estimates and Variances for the Durbin Estimator p, and the Bootstrap

Bias-Adjusted Estimator pF for N = 20 and N = 30

P

.90

.80

.70

.60

.50

.40

.30

.20

.10

.00

-.10

-.20

-.30

-.40

-.50

-.60

-.70

-.80

-.90

Pi

.239

.221

.180

.131

.083

.030

-.030

-.090

-.159

-.223

-.287

-.357

-.431

-.498

-.563

-.636

-.716

-.789

-.863

N =

Var.

.068

.066

.066

.062

.060

.059

.056

.055

.051

.049

.047

.044

.041

.038

.036

.031

.026

.021

.014

= 20

Pr

.696

.677

.630

.564

.495

.414

.321

.223

.117

.018

-.081

-.184

-.292

-.389

-.479

-.578

-.682

-.771

-.856

Var.

.118

.126

.139

.142

.147

.148

.145

.140

.127

.119

.107

.097

.086

.077

.070

.057

.043

.021

.019

P,

.456

.410

.361

.294

.229

.165

.087

.015

-.065

-.147

-.217

-.302

-.380

-.462

-.536

-.620

-.706

-.784

-.869

N =

Var.

.040

.038

.041

.038

.038

.038

.035

.034

.035

.032

.030

.030

.026

.026

.023

.020

.017

.014

.009

•• 30

Pr

.769

.747

.689

.600

.511

.422

.315

.219

.112

.007

-.084

-.192

-.291

-.394

-.485

-.588

-.688

-.776

-.867

Var.

.057

.064

.075

.075

.077

.074

.066

.061

.060

.054

.050

.049

.045

.042

.036

.030

.023

.017

.010

Note. Estimates are based on 5,000 simulations. Var. - variance.

Table 4

Empirical Estimates and Variances for the Durbin Estimator p, and the Bootstrap

Bias-Adjusted Estimator ppfor N = 50 and N = 100

P

.90

.80

.70

.60

.50

.40

.30

.20

.10

.00

-.10

-.20

-.30

-.40

-.50

-.60

-.70

-.80

-.90

Pi

.637

.558

.506

.426

.344

.262

.175

.090

.002

-.085

-.169

-.259

-.343

-.435

-.522

-.612

-.699

-.789

-.879

N =

Var.

.018

.018

.019

.019

.021

.021

.021

.020

.021

.020

.018

.019

.017

.016

.014

.013

.010

.008

.005

-- 50

PF
.860

.797

.709

.609

.508

.410

.308

.210

.108

.007

-.089

-.192

-.289

-.395

-.493

-.594

-.690

-.786

-.878

Var.

.023

.029

.031

.031

.030

.029

.029

.028

.028

.027

.026

.025

.023

.021

.019

.016

.012

.009

.005

P,

.780

.696

.610

.519

.427

.333

.240

.148

.055

-.041

-.134

-.228

-.322

-.416

-.510

-.603

-.698

-.791

-.887

N =

Var.

.006

.007

.007

.008

.009

.009

.011

.010

.010

.010

.010

.009

.009

.008

.007

.006

.005

.004

.002

•• 100

PF

.898

.804

.707

.607

.508

..407

.308

.209

.110

.007

-.093

-.194

-.296

-.396

-.497

-.595

-.694

-.790

-.886

Var.

.007

.009

.009

.010

.010

.011

.011

.012

.012

.012

.012

.011

.011

.009

.008

.007

.006

.004

.002

Note. Estimates are based on 5,000 simulations. Var. = variance.
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Figure 1. Bootstrap empirical Type I errors. Empirical as
are based on 5,000 simulations of N - 20. The four pa-
rameters plotted at each level of p are, in order, as follows:
intercept (P0), first-phase slope (p,), level change (p2), and
slope change (f33). Open boxes correspond to left-tailed tests
and filled boxes to right-tailed tests. The horizontal line
corresponds to a nominal a of .05.

based on the Durbin estimate of p. The TV procedure,
being based on the true value of a parameter, is of
course not a statistical procedure, but it does provide
a benchmark comparison of power with our bootstrap
procedure.

Figures 6 and 7 compare the simulated power re-
sults of the bootstrap method with that of the TV
procedure. Power results are based on the hypothesis
H0: p2 = 0, when in fact the true £2 = 1. Results are
shown for N = 30 and 50, using nominal a = .05.
We observe from Figures 6 and 7 that the bootstrap
procedure has comparable power to the results of the
TV procedure.

Study 2

Table 5 compares the empirical means of the boot-
strap and ARIMA procedures. For both procedures

Figure 4. Bootstrap empirical Type I errors. Empirical as
are based on 5,000 simulations of N = 50. The four pa-
rameters plotted at each level of p are, in order, as follows:
intercept O0), firsl-phase slope {(3,), level change (p2), and
slope change (p.,). Open boxes correspond to left-tailed tests
and filled boxes to right-tailed tests. The horizontal line
corresponds to a nominal a of .05.

the empirical means of the regression coefficients are
quite close to each other and quite close to their true
values. Note, however, that the procedures differ on
the estimate of the autoregression coefficient, p. As
the empirical means show, the bootstrap's estimate of
p is much closer to the actual value than is the esti-
mate based on the ARIMA procedure. Figures 8 and
9 present the Type I error rates for tests of the regres-
sion model parameters using the bootstrap method
and output produced from ARIMA. The Type I error
rate for the bootstrap procedure is much closer to the
nominal .05 level than that for the ARIMA procedure,
Notice that extremely liberal values are obtained us-
ing the ARIMA approach.

Figure 10 displays the empirical power of the boot-
strap procedure for the test on (33. Power results for
the ARIMA procedure are not reported because of its

n'ffI

Figure 3. Bootstrap empirical Type I errors. Empirical as
are based on 5,000 simulations of N = 30. The four pa-
rameters plotted at each level of p are, in order, as follows:
intercept (p0), first-phase slope (P,), level change (|}2), and
slope change (P3). Open boxes correspond to left-tailed tests
and filled boxes to right-tailed tests. The horizontal line
corresponds to a nominal a of .05.

-.3

Figure 5. Bootstrap empirical Type I errors. Empirical as
are based on 5,000 simulations of AT = 100. The four pa-
rameters plotted at each level of p are, in order, as follows:
intercept (p0), first-phase slope (p,), level change (P2), and
slope change (p3). Open boxes correspond to left-tailed tests
and filled boxes to right-tailed tests. The horizontal line
corresponds to a nominal a of .05.
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Figure 6. Empirical power comparisons, based on 5,000 simulations of N = 30. Nominal
a = .05. Filled boxes correspond to the Prais-Winsten generalized least squares method
based on the true value of p, and open boxes correspond to the bootstrap method.

poor Type I behavior in the above study. Table 6
shows the empirical means of the bootstrap estimates
of the regression coefficients and the autoregressive
parameters. Once again the estimates arc close to their
actual values.

Example

An example of the application of the new double
bootstrap method to a published study is presented
below. We first show that diere are conditions under
which the outcome of ordinary least squares (OLS),
various versions of GLS, ARIMA (1,0, 0), and the
new method are very similar. Next, we show that the
new method can provide results that differ consider-

ably from those provided by conventional solutions
when autocorrelation of the errors appears to be high.
In both instances the results are consistent with simu-
lation results and statistical theory cited earlier in this
article.

Analysis of Original Data
Dyer, Schwartz, and Luce (1984) investigated the

potential intervention effects of staff training on the
behavior of severely handicapped students. A portion
of the data they reported can be viewed as having
been collected under a two-phase time-series design.
We used the four-parameter design matrix presented
earlier in Equation 1 with the following methods: (a)
OLS, (b) Cochrane-Orcutt, (c) Prais-Winsten, (d)
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Figure 7. Empirical power comparisons, based on 5,000 simulations of N — 50. Nominal
a = .05. Filled boxes correspond to the Prais-Winsten generalized least squares method
based on the true value of p, and open boxes correspond to the bootstrap method.

maximum-likelihood, (e) ARIMA (1,0,0), and (f) the
new double bootstrap method.

The results are presented in the top of Table 7,
which shows that the estimates of the four regression
coefficients as well as the / values associated with
these coefficients are very similar. The estimates of
autocorrelation among the errors are almost identical
using the various analyses.

Because parameters (ij and (33 in the tentative four-
parameter model do not appear to be necessary (note
the / values), we estimated a more parsimonious
model containing only two parameters (viz., the in-
tercept po and the level-change coefficient (J2)- Once
again, we used all methods of estimation mentioned
above; the results are presented in the bottom of Table

7. The parameter estimates are almost identical for all
methods, and the t statistics are quite similar. We
conclude from all methods that there is an interven-
tion effect of about nine points and that it is not rea-
sonable to interpret this difference as attributable to
sampling error.

Analysis of Autocorrelation-Contaminated Data

To demonstrate the properties of the new method in
the context of autocorrelated data, the original Dyer et
al. (1984) data (analyzed above) were contaminated
by adding a high level of autocorrelation (p, = .80) to
the residuals of the OLS fit. An adequate analysis of
these contaminated data should recover most of the
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ft ft ft ft

Figure <•?. Bootstrap empirical Type T errors, based on
5,000 simulations of N — 30. Open boxes correspond to
left-tailed tests and filled boxes to right-tailed tests. The
horizontal line corresponds to a nominal a of .05. (30 =
intercept; p, = first-phase slope; |32 = level change; (33 =
slope change.

ft /Si ft ft

Figure 9. Autoregressive integrated moving average em-
pirical Type I errors, based on 5,000 simulations of N — 30.
Open boxes correspond to lefl-tailed tesls and filled boxes
to right-tailed lests. The horizontal line corresponds to a
nominal a of .05. p0 - intercept; (}, = first-phase slope;
(3 2 = level change; (J, = slope change.

autocorrelation introduced and provide results similar
to those obtained on the uncontaminated data. The
results obtained using the six methods described
above can be seen in Table 8.

Table 5
Empirical Means of Parameter Estimates

Parameter

P
Po
Pi
P2

Pj

Actual

.498

.000

.000

.000

.000

Bootstrap

.491

.020
-.002

.002

.004

ARIMA

.221

.026
-.003

.003

.004

Note. Estimates are based on 5,000 simulations of N = 30,
ARIMA = autoregrcssive integrated moving average.

Differences among the six estimates of p, are sub-
stantial. Notice that the bootstrap estimate of p, is .74,
whereas the values produced by the other methods are
much lower. The autocorrelation coefficient along
with the test of significance on this coefficient (not
shown) indicates that (a) the errors are highly auto-
correlated, (b) OLS is inappropriate in this applica-
tion, and (c) correction for autocorrelated errors
should be undertaken.

Notice that the values for regression coefficients (1,
and P3 (first-phase slope and slope change, respec-
tively) and the corresponding t values associated with
the bootstrap differ greatly from those produced by
the other methods. One outcome of the bootstrap
analysis is that neither [}, nor [J3 are needed in the
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.7 Table 6
Empirical Means of the Bootstrap Parameter Estimates
for the Power Study

&> ft
Figure 10. Bootstrap empirical power results, based on
5,000 simulations of N = 30. Open boxes correspond to
left-tailed tests and filled boxes to right-tailed tests. The
horizontal line corresponds to a nominal a of .05. B0 =
intercept; B, = first-phase slope; B2 = level change; B3 =
slope change.

model; most of the other methods lead to the conclu-
sion that these parameters should be retained in the
model. Recall from the analysis of the original data
(Table 7) that P! and (J3 are not necessary in the
model. Hence, the model identified by the bootstrap is
consistent with the analysis of the original data,
whereas the conventional procedures argue for a more
complex (and incorrect) model. Note also in the bot-
tom of Table 8 that the level-change estimate (9.12)
provided by the bootstrap analysis of the contami-
nated data is consistent with the level-change estimate

Parameter

P
Po
P,
(*2

03

Actual

.487

.000

.000
1.000

.500

Bootstrap

.479
-.016
-.001

.999

.501

Note. Estimates based on 5,000 simulations of N - 30.

(9.05) provided by the analysis of the original non-
contaminated data.

Discussion

We have presented a theoretically based bootstrap
procedure to analyze linear models with autoregres-
sive error terms. Our focus was on a particular two-
phase intervention model with first-order autoregres-
sive error terms. However, the theoretical framework
is general and can be applied to other linear models
with higher order autoregressive error terms. Simula-
tion results show the superiority of the bootstrap over
other popular methods (including maximum-
likelihood procedures) in controlling Type I errors. In

Table 7
Parameter Estimates and t Values Associated With Six
Estimation Methods Applied to Linearly Transformed
Time-Series Data From Dyer. Schwartz, and Luce (1984)

Method

Coef. BS OLS C-0 P-W ML AR1MA

Four-parameter design matrix

Pi
Po

j}2

P3

to
t,
'2
h

-.24
4.28
0.15
7.31

-0.12
3.69
1.27
5.61

-0.94

-.25
4.40
0.14
7.39

-0.10
3.44
1.03
4.80

-0.72

-.25
4.26
0.15
7.31

-0.12
3.78
1.31
5.71

-0.97

-.25
4.35
0.14
7.36

-0.11
4.22
1.33
5.90

-0.96

-.25
4.35
0.14
7.36

-0.11
4.22
1.33
5.90

-0.96

-.25
4.35
0.14
7.36

-0.11
4.22
1.33
5.90

-0.96

Two-parameter design matrix

P'

P2

'o
'2

-.21
5.58
9.05

10.58
14.92

-.21
5.56
9.08
9.17

12.16

-.21
5.58
9.05

10.84
14.35

-.21
5.56
9.08

11.14
14.76

-.21
5.56
9.08

11.14
14.76

-.21
5.56
9.08

11.14
14.76

Note. Cocf. = coefficient; BS = double bootstrap; OLS = or-
dinary least squares: C-O = Cochrane-Orcutt; P-W = Prais-
Winsten; ML = maximum-likelihood; ARIMA = autoregressive
integrated moving average.
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Table 8

Parameter Estimates and t Values Associated With She

Methods Applied to Time.-Serie$ Data From Dyer,

Schwartz, and Luce (1984) That Have Been Contaminated

by Adding Autocorrelation (ft, = .SO) to the Residuals

Method

Cocf. BS OLS C-0 P-W ML ARIMA

Four-parameter design matrix

Pi

Po

p,
p,
(33

>0

/!

<2

'*

.74

6.65

0.03

9.33

-0.19

2.03

0.11

6.06

-0.60

.46

4.05

0.32

7.15

-0.49

5.08

3.91

7.44

-5.60

.46

5.25

0.19

8.30

-0.36

3.25

1.32

6.38

-2.27

.46

4.20

0.28

7.93

-0.45

3.64

2.46

6.41

-3.52

.51

4.22

0.27

8.08

-0.45

3.44

2.27

6.33

-3.26

.51

4.22

0.27

8.08

-0.45

3.44

2.27

6.33

-3.26

Bootstrap analysis based on two-parameter design matrix

p, .86

Po 5.63

P2 9-12
ta 3.30

I2 6.61

Nate. Cocf. = coefficient; BS — double bootstrap; OLS = or-
dinary least squares; C-O — Cochrane-Orcutt; P-W = Prais-
Winsten; ML = maximum-likelihood; ARIMA = autoregressive
integrated moving average.

contrast, traditional GLS and maximum-likelihood

methods yield liberal Type I error rates. Our bootstrap

procedure thereby offers a more exact method for test-

ing hypotheses about the model parameters. Simula-

tion results also show that the bootstrap procedure is

nearly as powerful as the Prais-Winsten GLS proce-

dure when the latter is provided (unrealistically) with

the known (rather than an estimated) value of p in the

TV procedure. It seems that there are no competing

procedures that are as satisfactory in the small-sample

case as the proposed bootstrap method.

The simulation results show that the bootstrap bias-

adjusted estimates of the autoregressive parameters

are much less biased than the original (Durbin) esti-

mates. It can be concluded that the bootstrap autocor-

relation estimation method is also far less biased than

all competing estimation methods that are mathemati-

cally similar to the Durbin procedure. These methods

include the popular Prais-Winston, Cochrane-Orcutt,

and all related approaches. The bootstrap confidence

intervals for these autoregressive parameters show

good coverage properties over the situations studied.

The example discussed is illustrative of the theo-

retical discussion of our bootstrap procedure and our

simulation study. The data were drawn from a two-

phase study that we modeled using the four-parameter

design matrix presented earlier. On the original data

all the methods (OLS, various versions of GLS,

ARIMA [1, 0, 0], and our double bootstrap procedure)

are very similar. All the methods indicated little au-

tocorrelation effect and that the two-slope parameters

of the four-parameter design were not necessary. We

then altered the data by inserting an autocorrelation

effect into the errors. The double bootstrap analysis of

these contaminated data recovered most of the auto-

correlation introduced and provided results similar to

those obtained on the uncontaminated data. The other

procedures, though, had severely biased estimates of

the autocorrelation parameter. As our simulation re-

sults predicted, this caused the other analyses to have

deflated standard errors of the regression coefficients,

leading to the finding that the slope effects are sig-

nificant. Hence, the model identified by the bootstrap

is consistent with the analysis of the original data,

whereas the conventional procedures argued for a

more complex (and incorrect) model.

Future work is needed to explore the usefulness of

the bootstrap in analyzing more complicated models

with higher order autoregressive and moving average

error terms. We also intend to explore other bootstrap

procedures and jackknife procedures (see Wu, 1986)

for these types of problems. Preliminary simulation

results for our double bootstrap (McKnight, 1994)

based on a two-phase intervention model with second-

order autoregressive error terms indicate that our

bootstrap can be successfully applied to higher order

autoregressive models. Because first- and second-

order autoregressive models adequately capture the

error structure for a large proportion of time-series

regression models, the new procedure has many po-

tential applications.
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