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Single-case experimental methods are used across a range of educational and psychological research.
Single-case data are analyzed with a variety of methods, but no statistic has demonstrated clear
superiority over other methods. The time-series nature of single-case designs requires special consider-
ation for baseline trend and autocorrelation when estimating intervention effect size. However, standard
correction methods are limited because they assume precise statistical estimation of trend and autocor-
relation. Unlike standard correction methods, Monte Carlo simulation methods can address the poor
precision of single-case effect size indices. This paper presents the rationale for a new simulation method,
Interrupted Time-Series Simulation (ITSSIM). A small field test was also conducted, and ITSSIM
performed similarly to sophisticated multilevel methods for single-case research. ITSSIM is accessible
as a free software application that requires no prior knowledge of statistical computing or syntax. ITSSIM
may be used to estimate the effect size of a single interrupted time-series (AB design), and multiple
ITSSIM effect size estimates may be combined via meta-analysis.

Impact and Implications
A new method of single-case data analysis, ITSSIM, uses computer simulation to test the effective-
ness of school/psychological interventions at the individual subject level. ITSSIM gave results
similar to sophisticated multilevel modeling methods when tested on a small example data set,
suggesting ITSSIM is a viable tool for single-case research. This new method of analysis is easy for
all investigators to use because ITSSIM software is free to download and requires no previous
statistical computing experience.
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Single-case experimental designs have for decades been an
important feature of educational and behavioral research, and they
continue to gain popularity across all areas of psychology (Smith,
2012). Single-case designs can demonstrate causal intervention
effects, similar to randomized controlled trials, and they can sup-
port the development of evidence-based interventions (APA Pres-
idential Task Force on Evidence-Based Practice, 2006; Barlow &
Hersen, 1984). Single-case methods are also accessible to a broad
range of investigators because they do not require the considerable
resources of large-sample studies (Barlow & Nock, 2009; Morgan
& Morgan, 2001).

An unresolved issue in single-case research is the lack of con-
sensus about the analysis of experimental data. Most single-case

studies evaluate data with visual analysis—a well-established ap-
proach with limited reliability (Brossart, Parker, Olson, & Ma-
hadevan, 2006; Danov & Symons, 2008; DeProspero & Cohen,
1979; Harbst, Ottenbacher, & Harris, 1991; Lieberman, Yoder,
Reichow, & Wolery, 2010; Park, Marascuilo, & Gaylord-Ross,
1990; Ximenes, Manolov, Solanas, & Quera, 2009). A meta-
analysis of visual analysts’ interrater agreement found interrater
reliabilities were better than previously thought, but on average
interrater agreement fell short of “minimally acceptable” levels
(Ninci, Vannest, Willson, & Zhang, 2015). Statistical analysis
complements visual analysis when it clarifies or confirms the
findings of visual raters. Effect size statistics can also aid the
quantitative synthesis of findings across studies. However, there is
no consensus on how best to quantify the data patterns identified
by visual inspection. This is a problem for investigators because
different single-case statistics may lead to different effect size
estimates for any given data set (Brossart et al., 2006; Parker &
Brossart, 2003; Parker & Vannest, 2012).

An ideal single-case statistical method should meet several
criteria. First, a single-case statistic should minimally yield an
easy-to-interpret effect size estimate for comparing the magnitudes
of intervention outcomes (Maggin & Odom, 2014). Second, a
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single-case statistic should quantify the precision of the effect size
estimate; for example, a small but highly reliable intervention
effect may be more clinically meaningful than a large but unreli-
able intervention effect. Third, an ideal single-case statistic should
model interrupted time-series data accurately; it should incorporate
the data parameters which are known to characterize participant
responses. For decades researchers have discussed which param-
eters should be included in single-case data analysis. The most
debated parameters involve processes which affect behavior over
time, such as baseline trend and autocorrelation (Manolov, 2017;
Tarlow, 2017; Wampold, 1988). Fourth, analytic methods should
be accessible to as wide a range of investigators as possible (Parker
& Vannest, 2012; Shadish, 2014b). This includes practitioners and
applied researchers who may not possess advanced statistical
training. Accessibility is enhanced when investigators can under-
stand and apply statistical methods to their own data and interpret
results appropriately in order to answer their questions. Fifth,
given the growing interest in single-case meta-analysis, effect size
statistics should facilitate the quantitative synthesis of experimen-
tal results across cases and studies. Meta-analysis is one area
where statistical methods are expected to be superior to visual
analysis (Beretvas & Chung, 2008; Busk & Serlin, 1992; Maggin
& Odom, 2014; Scruggs & Mastropieri, 2001).

Though no current methods satisfy all criteria perfectly, statis-
tical methods for single-case research tend to fall into one of two
heterogeneous groups. The first includes relatively simple effect
size indices well-suited for use by clinicians. These methods are
easily calculated from a single interrupted time-series data set, and
their interpretation is fairly intuitive. For example, many single-
case statistics quantify the degree of data nonoverlap between
baseline and intervention phases, with greater nonoverlap suggest-
ing an effective intervention (Parker, Vannest, & Davis, 2011).
Other straightforward effect size statistics do not estimate non-
overlap, but instead fit trend lines to time-series via regression or
other methods to better estimate the effect of intervention when
stable baselines are not attainable (Tarlow, 2017). These methods
are often critiqued for being overly simplistic, and failing to
achieve the third criterion described above—the accurate modeling
of brief time-series data. These methods often capture one impor-
tant feature of data (e.g., data nonoverlap) while ignoring another
(e.g., autocorrelation, trend). As a result, popular methods may
yield different effect size estimates for the same data set (Smith,
2012).

The second group of single-case statistics includes sophisticated
methods that utilize multilevel modeling. These statistics allow
researchers to pool data from across cases and estimate complex
time-series data patterns with a high degree of precision (Shadish,
Rindskopf, & Hedges, 2008; Ugille, Moeyaert, Beretvas, Ferron,
& Van den Noortgate, 2012; Van den Noortgate & Onghena,
2003). Multilevel single-case methods have great potential for
organizing the emerging field of single-case meta-analysis, as they
are well-suited for synthesizing results of many single-case exper-
iments. However, these methods are critiqued for being difficult to
implement and interpret without advanced statistical training—that
is, they fail the fourth criterion of accessibility (Parker & Vannest,
2012). Single-case research is a historically pragmatic discipline,
and new methods which are hard to adapt to clinical settings may
offer little practical value to investigators despite their statistical
sophistication (Schlosser, Lee, & Wendt, 2008).

This paper introduces a new method of single-case data analysis
called Interrupted Time-Series Simulation (ITSSIM). ITSSIM was
developed to addresses the five criteria outlined above. Essential to
ITSSIM is the assumption that one observed single-case data set
can be explained by many plausible intervention effects. ITSSIM
uses Monte Carlo simulation modeling to determine what effect
size is most likely (and how reliable that effect is) based on the
many possible conditions which could plausibly yield the observed
data. In this way ITSSIM is somewhat like the first group of
simpler statistics, in that it is easily applied and interpreted. Yet it
is also like the second group of sophisticated multilevel methods,
because it estimates intervention effects by pooling information
across many simulated cases.

Outline of Study

This paper proceeds as follows: (a) limitations of standard
single-case statistical control methods (for trend and autocor-
relation) are discussed, and Monte Carlo simulation methods
are presented as one method of addressing those limitations; (b)
ITSSIM effect size calculation and interpretation are discussed,
and limitations of ITSSIM are addressed; (c) a small field test
of ITSSIM is conducted where data from a published single-
case study are reanalyzed, and a meta-analysis of ITSSIM effect
sizes is compared to five multilevel methods; (d) the results of
the field test are reviewed and recommendations for ITSSIM’s
use are presented.

Limitations of Statistical Control in Single-Case
Data Analysis

Before ITSSIM is formally introduced, some limitations of
conventional single-case statistical control methods are illustrated
below. These limitations will establish the rationale for simulation-
based effect size statistics like ITSSIM. Two control problems—
baseline trend and autocorrelation—involve analyzing data that
has some time-dependent process which confounds a straightfor-
ward preintervention/postintervention (or A/B) comparison.

Baseline Trend

For the baseline trend problem, consider the dilemma of the
participant who is already improving before the experimental
intervention is introduced. If the participant is improving during
the baseline phase, and then the participant fully recovers during
the intervention phase, one cannot infer the recovery was due
solely (or even partly) to the intervention. Perhaps the participant
would have recovered without treatment. Or perhaps the partici-
pant would have recovered more quickly were it not for some
unexpected noxious effect of the treatment.

Single-case investigators have proposed a number of statistical
trend control methods to account for baseline trend (Manolov,
2017). These methods include regression models, the Extended
Celeration Line (ECL), the Mean Phase Difference (MPD), Base-
line Corrected Tau, Tau-U, and others (Tarlow, 2017). Most meth-
ods control trend by estimating a baseline trend parameter and
statistically removing the effect of the estimated trend from both A
and B phases. In theory, the corrected baseline phase data no
longer contain observable trend, and thus whatever intervention
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effects remain in the corrected B phase data are assumed to exist
beyond the influence of baseline trend. The effect size estimated
from trend-corrected data is therefore considered the “true” inter-
vention effect. There is a general consensus about this approach
among single-case statistics that account for baseline trend, though
the methods of trend estimation and correction vary from statistic
to statistic. Most (but not all) trend correction methods assume
linear trend patterns; trend may be estimated with parametric or
nonparametric statistical models; it may be assumed a priori that
all data sets are trended and in need of correction, or it may be
assumed that data are stable and not trended unless proven other-
wise.

Unfortunately, despite the variety of correction methods, few
single-case statistics explicitly account for the reliability or unre-
liability of baseline trend estimates. This practice raises several
concerns. It is unclear whether trend should be corrected in all
cases, or only in cases where some criterion is met—such as
statistical significance of trend, magnitude of trend, or some com-
bination of both. It is plausible that, given the brief time-series
common in single-case designs, observed trends may be explained
by the chance variability of the small sample data, and not to true
preexisting baseline trends. Parker, Vannest, Davis, and Sauber
(2011) recommended that investigators control trend when an
observed baseline trend coefficient falls above a given cutoff point.
Tarlow (2017) recommended trend correction only when observed
baseline trends were statistically significant; essentially, a null
hypothesis of no trend must be rejected before the investigator
alters observed data. Other approaches disregard hypothesis testing
completely, and incorporate a baseline trend correction automati-
cally and regardless of the trend’s magnitude or statistical signif-

icance (Allison & Gorman, 1993; Huitema & McKean, 2000b;
Manolov & Solanas, 2009, 2013; White & Haring, 1980).

Trend correction is risky when the precision of the trend esti-
mate is unknown. To illustrate, consider the hypothetical time-
series in Figure 1. This time-series of 100 data points was gener-
ated from random normally distributed data points with unit
variance (s2 � 1.00) and an increasing linear trend with slope � �
0.20. Suppose an investigator estimates the trend in a baseline of
10 points (assume the other 90 points are not observed). How
accurately would that estimate reflect the true trend parameter of
� � 0.20?

The Figure 1 time-series is partitioned into brief time-series of
10 points each. Suppose each sample of 10 points is corrected for
baseline trend via ordinary least squares (OLS) regression—but
the correction is based only on the estimated trend in the 10-point
sample, not the “unknown” true parameter of � � 0.20. In some
cases, the estimated trend will be less than the true trend, and in
other cases it will be greater than the true trend. Two corrected
time-series are illustrated in the bottom graph of Figure 1. In one
corrected series, baseline trend was controlled with the trend
estimates of each 10-point sample; in the other, trend was con-
trolled with the true trend.

Although the two corrected time-series in Figure 1 appear
visually similar, there is one important difference. The variance of
the time-series corrected with the true slope parameter is un-
changed from the original data, s2 � 1.00. However, the variance
of the time-series corrected with the sampled slope estimates is
reduced by over 20%, s2 � 0.78. Because parameter estimates are
never perfectly precise, 20% of the data set’s information was
mistaken for trend and discarded. Any inferences made from the

Figure 1. Hypothetical time-series with corrections for trend (n � 100). Original data is displayed in the top
graph. In the bottom graph, trend was removed using the known slope parameter, � � 0.20 (dark line), and
removed using an estimated slope from each interval of 10 data points (light line), resulting in an unwanted
reduction of variance.
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overcorrected data should take into account this reduction in
variance. Failure to do so would distort conclusions about inter-
vention effectiveness.

Here is the crucial point of this heuristic example: nearly all
baseline trend control methods in single-case research assume
trend estimates are perfectly precise. In most single-case statistics,
a trend coefficient is estimated and then data are corrected and
analyzed. The unreliability of trend estimates is rarely considered.
Perhaps more importantly, the precision of trend estimates de-
creases as the number of baseline phase data points decreases. For
example, if the Figure 1 data were partitioned into samples of five
points instead of 10 points, the corresponding reduction in variance
from trend correction would increase from 20% to nearly 40%
(s2 � 0.63). This result should be of great concern to single-case
investigators, who may be drawing conclusions from “trend con-
trolled” data that have little resemblance to reality.

Autocorrelation

Autocorrelation describes the degree of serial dependence in
time-series data. In autocorrelated data, past fluctuations in the
time-series predict future fluctuations. This violates the assump-
tion of independence shared by most methods. Autocorrelation
distorts visual analysis (Jones, Vaught, & Weinrott, 1977; Matyas
& Greenwood, 1990) and statistical analysis of single-case data
(Brossart et al., 2006; Manolov & Solanas, 2008; Tarlow, 2017).

Single-case methods of autocorrelation correction rarely ac-
count for the lack of precision in autocorrelation estimation, just as

with trend correction. Some have recommended “cleansing” auto-
correlation from data (also called “back-casting” or “pre-
whitening”) before an effect size is calculated (e.g., Parker, Cryer,
& Byrns, 2006, 2011). The process is similar to trend correction:
an autocorrelation model is estimated from observed data, then
data are “corrected” to remove the influence of the estimated
autocorrelation, and then an effect size is calculated. Unfortu-
nately, autocorrelation estimation requires a large number of data
points to yield reliable estimates, far more than are typically
available to single-case investigators (Box & Jenkins, 1970; Glass,
Willson, & Gottman, 1975). Back-casting does remove the auto-
correlation observed in a sample of data points—just as trend
control removes trend in an observed baseline—but the procedure
may lead to misleading conclusions about intervention effects.
Statistical removal of autocorrelation (or baseline trend) from data
does not guarantee results are reliable or valid.

The hypothetical Figure 2 data illustrates the hazard of cleansing
autocorrelation from brief time-series data with ARIMA model
fitting (i.e., back-casting). Similar to the Figure 1 example, the
Figure 2 data was generated with a lag-1 autoregressive parameter
�1 � 0.20 and unit variance (s2 � 1.00). Two corrected time-series
are presented. In one, autocorrelation is cleansed using the true �1

parameter; the variance of the time-series is nearly unchanged,
s2 � 0.96. In the other corrected time-series, autocorrelation is
cleansed within each 10-point sample using an autocorrelation
estimate; the result is a reduction in variance to s2 � 0.79, or again
roughly 20%. The results from Figure 1 and Figure 2 beg the

Figure 2. Hypothetical time-series with corrections for autocorrelation (n � 100). Original data is displayed
in the top graph. In the bottom graph, trend was removed using the known autocorrelation parameter, �1 � 0.20
(dark line) and removed using an estimated slope from each interval of 10 data points (light line), resulting in
an unwanted reduction of variance.
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question: If a large portion of information contained in the ob-
served data is erroneously discarded during the statistical correc-
tion process, how useful are the effect size estimates calculated
from corrected data?

Simulation Methods Do Not Assume Perfectly
Precise Control

As the Figure 1 and Figure 2 examples demonstrate, statistical
control of brief time-series data is limited by the precision of
baseline trend and autocorrelation estimates. However, many
single-case statistics assume correction methods are perfectly pre-
cise—though we know this assumption is false, particularly for
autocorrelation but also for baseline trend. In most statistical
control methods, a baseline trend and/or autocorrelation coefficient
is calculated and used to adjust observed data for effect size
estimation, but those final results are almost never reported within
the context of the reliability, or unreliability, of the correction
parameter estimates.

Computer-aided simulation methods have the potential to ad-
dress this limitation. Rather than calculate one corrected data set
and one effect size estimate, many plausible effect sizes may be
calculated from many plausible corrected data sets. Rather than
assume correction methods are perfectly precise, a simulation
approach assumes many intervention effects (and trend parameters
and autocorrelation parameters) could have plausibly produced the
observed data. It may in fact be quite meaningful for investigators
to consider the range of plausible intervention effects that could
explain their observed data. A simulation approach therefore offers
context for interpretation absent in most single-case statistical
analyses.

Interrupted Time-Series Simulation: ITSSIM

Interrupted Time-Series Simulation (ITSSIM) follows a three-
stage process to yield an effect size estimate for an interrupted
time-series (AB) design. The three stages are (a) parameter esti-
mation, (b) time-series simulation, and (c) effect size calculation.
In the first stage, estimates and standard errors are calculated for
seven data parameters: A phase level, B phase level, A phase trend,
B phase trend, A phase error variance, B phase error variance, and
across-phase autocorrelation. These parameter estimates are used
to construct two models. A null effect model (based on the A phase
data) describes the participant’s behavior prior to intervention. An
experimental effect model (based on the B phase data) describes
the participant’s behavior during/after intervention. In the second
stage of ITSSIM, hypothetical data sets are simulated from the null
effect model and experimental effect model. This stage yields
thousands of artificial time-series that represent the null effect and
intervention effect within a range of plausible parameter values.
Essentially, the simulation stage yields two distributions of time-
series, one representing the range of plausible outcomes without
intervention, and one representing the range of plausible outcomes
with intervention. In the third stage, the null effect distribution and
the experimental effect distribution are compared to calculate a
standardized mean difference effect size, d. This effect size statis-
tic is suitable for meta-analysis.

ITSSIM was developed to estimate effect sizes for AB single-
case designs, as in a multiple baseline design. However, more

complex designs, such as an ABAB reversal, are also appropriate
for ITSSIM analysis. When a design includes multiple AB phase
contrasts, a separate ITSSIM effect size is calculated for each AB
phase contrast (therefore an ABAB design will yield two sequen-
tial effect size values). These effects may be reported separately or
combined via meta-analysis. The synthesis of multiple ITSSIM
effect sizes is demonstrated later in this paper, following the
explanation of ITSSIM methodology.

How Is ITSSIM Different From Other
Single-Case Statistics?

It is useful to keep in mind three differences between ITSSIM
and other single-case statistics while reviewing the ITSSIM pro-
cedure below. First, the ITSSIM effect size is not calculated from
exact estimates of level, trend, and so forth, nor is it calculated
directly from observed data. Instead, the ITSSIM effect size is
calculated from many simulated time-series that are based on a
range of conditions which could plausibly account for the observed
data. For example, rather than fit a single estimate of baseline trend
to a small sample of data points, ITSSIM models a range of many
baseline trend values that could fit the data. If observed data lead
to very precise parameter estimates with small standard errors
(e.g., “From the twenty baseline data points, I am confident that
the true baseline trend coefficient lies somewhere close to � �
0.20”), then simulated data sets will reflect that confidence. In this
way, unlike many other methods, ITSSIM incorporates the reli-
ability of the parameter estimates into effect size estimation.
ITSSIM thus “rewards” investigators for time-series that are stable
(i.e., less trend, variance) and long (i.e., larger n), though it can be
implemented with time-series of any length. (When extended/
stable baselines are not feasible for practical or ethical reasons, the
meta-analysis of multiple ITSSIM effect sizes can similarly pro-
vide more precise estimates, as discussed below.)

Second, ITSSIM effect size estimates are calculated from pre-
dicted data rather than corrected data. Many single-case statistics
model trend or autocorrelation by correcting observed data points
to make comparisons between A and B phases more tenable. This
approach is used because A phase and B phase observations are
recorded at different time intervals, and time confounds direct
A-to-B data comparisons when data points are changing determin-
istically over time. ITSSIM instead simulates B phase data from
both the null effect model and the experimental effect model.
These artificial B phase time-series, which are simulated predic-
tions, are directly comparable without correction because they are
simultaneous predictions for the same time interval. This strategy
is similar to single-case effect size statistics proposed by Gorsuch
(1983), Allison and Gorman (1993), and Manolov and Solanas
(2013), where B phase observations are compared with data pre-
dicted by baseline observations.

Third, the ITSSIM effect size is not calculated by a comparison
of A phase and B phase data. Instead, an ITSSIM effect size is
calculated from distributions of simulated time-series. The null
effect distribution (based on A phase data) and the experimental
effect distribution (based on B phase data) are both composed of
simulated time-series—predictions—for the B phase time interval.
These distributions do not directly represent A phase and B phase
data, but they do represent a range of plausible data parameters
based on the A and B phases, respectively.
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The three stages of the ITSSIM procedure are discussed further
below, and the online supplemental materials demonstrates ITS-
SIM calculations with a hypothetical data set. However, Figure 3
presents a simplified illustration of the three ITSSIM stages.

Stage I: Parameter Estimation

A statistical model represents an implicit model of reality
(Thompson, 2006). Models based on unrealistic parameters—or
models based on an insufficient number of realistic parameters—
will do a poor job of describing reality. There has been consider-
able discussion about which parameters should be included in the
analysis of single-case data. Many agree the most fundamental
parameters in an interrupted time-series (AB) design are level and
trend (e.g., Kazdin, 1982). Clinical treatments are often expected
to affect either the level (i.e., magnitude) of the outcome variable,
the trend (i.e., slope) of the outcome variable over time, or both.

Level and trend alone may be insufficient to comprehensively
model single-case data. As discussed earlier, autocorrelation is
often cited as an important parameter in single-case data analysis
(Campbell & Herzinger, 2010; Hartmann et al., 1980; Jones et al.,
1977; Smith, 2012; Shadish, 2014b). The serial dependence of
sequential data points may mask or exaggerate underlying inter-
vention effects (Brossart et al., 2006; Jones, Weinrott, & Vaught,
1978; Matyas & Greenwood, 1990). Variability, that is, the sta-
bility, or amount of “bounce” in time-series data points, is also
recognized as an important parameter in single-case analysis
(Hayes, 1981; Parsonson & Baer, 1992; Kazdin, 1982; Kratochwill
et al., 2010). Generally, data that are more stable offer more
compelling evidence of intervention effect.

Four parameters were selected for the ITSSIM model: level,
trend, variability, and autocorrelation. In an ITSSIM analysis,
coefficients for level, trend, and variability are estimated sepa-
rately for the A and B phase; autocorrelation is estimated for the
whole series after controlling for the other three variables.1 This
procedure leads to an estimation of seven total coefficients: A
phase level, A phase trend, A phase variability, B phase level, B
phase trend, B phase variability, and across-phase autocorrelation.

The order in which parameters are estimated is important. For
example, the presence of trend can greatly distort estimates of
autocorrelation (Huitema & McKean, 1998; Yue, Pilon, Phinney,
& Cavadias, 2002). Trend should be estimated and then removed
from the time-series in order to accurately measure the degree of
autocorrelation. Within-phase variability should also be controlled
before estimating cross-phase autocorrelation, because heterosce-
dasticity within a time-series could distort the estimated autocor-
relation coefficient. Given these constraints, ITSSIM parameter
estimation is conducted with the following steps.

Estimate level and slope parameters: Theil-Sen robust
regression. Regression methods are widely used in single-case
analysis and simulation models (Huitema & McKean, 2000b).
Regression is useful in single-case data analysis because it models
both trend and level changes. However, ordinary least squares
(OLS) regression is limited by its assumptions and sensitivity to
outliers (Brossart, Parker, & Castillo, 2011). Nonparametric robust
regression is a promising alternative to OLS regression in single-
case research because it makes fewer distributional assumptions
and is less sensitive to outliers. Theil-Sen nonparametric regres-
sion (Sen, 1968; Theil, 1950) is used in ITSSIM analysis because

it is robust, yields a relatively small standard error, and is efficient
in small samples—or in this case, brief time-series (Wilcox, 1998,
2001). Theil-Sen regression has been recommended for single-case
data analysis (Tarlow, 2017; Vannest, Parker, Davis, Soares, &
Smith, 2012) and has been used in other fields to analyze auto-
correlated, non-normal, monotonically trended time-series data
(e.g., Yue et al., 2002).

Theil-Sen level and trend (i.e., intercept and slope) coefficients
are therefore estimated for observed A and B phase data sepa-
rately. Standard errors for these coefficients are then calculated
using a bootstrap procedure (Wilcox, 2001).

Estimate variability parameters: Error variance. Variabi-
lity within each phase is calculated as the variance of the Theil-Sen
regression residuals. Both the phase error variance (s2) and its
standard error are calculated using OLS methods.

Estimate lag-1 autocorrelation coefficient: Unbiased r1. An
unbiased r1 estimator (Ferron, 2002; Huitema & McKean, 1998,
2000a) is calculated across both A and B phase data after stan-
dardizing the Theil-Sen residuals (i.e., dividing residuals by their
within-phase standard deviation). There are several ways to esti-
mate the standard error of the r1 statistic, with Bartlett’s (1946)
method being the most popular. However, Huitema and McKean
(1998) demonstrated that Bartlett’s method was biased in small
samples; their modified var(r1) estimator is used in the ITSSIM
model.

At the end of the parameter estimation stage, the ITSSIM
analysis will yield seven coefficients and their corresponding
standard errors. These parameter estimates comprise the null effect
and experimental effect models. Table 1 presents hypothetical null
effect and experimental effect models.

Stage II: Time-Series Simulation

It is useful to note that, following the parameter estimation
stage, the investigator is left with a time-series that has unit
variance and an estimated autocorrelation value. It would be pos-
sible at this point to work backward through the parameter esti-
mation stage, restoring the within-phase error variance and then
blending the residuals with the Theil-Sen regression coefficients,
to return these standardized residuals to the original data set. In
fact, using only the parameter estimates and standard errors from
the first stage (e.g., Table 1), it would be possible to recreate a
time-series very similar to the original data set, with differences
attributable only to random variability in the initial standardized
residuals. This process of “working backwards” is essentially how
the time-series simulation stage of ITSSIM is conducted.

Randomly sample simulation parameters. A random time-
series is created with a preset degree of autocorrelation, and then
within-phase variability, trend, and level are added. But instead of
using the parameter estimates of the original data set (e.g., Table
1), new coefficients are randomly drawn from the estimated pa-
rameters’ sampling distributions. These new level, trend, variabil-
ity, and autocorrelation coefficients—though not the exact values
calculated from the observed data—plausibly represent the true

1 Autocorrelation is estimated across both phases because of the low
power of autocorrelation estimators in brief time-series (see discussion
above, e.g., Figure 2). The ITSSIM model assumes autocorrelation is
relatively stable from phase to phase.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

595ITSSIM: INTERRUPTED TIME-SERIES SIMULATION

http://dx.doi.org/10.1037/spq0000273.supp


nature of the participant’s response pattern given the known pre-
cision of the original parameter estimates. This procedure is arith-
metically simplified because the sampling distributions of Theil-
Sen, variance, and lag-1 autocorrelation coefficients are normal
(Anderson, 1942; Cox, 1966; Mann, 1945; Sen, 1968). Thus, about

two thirds of the randomly sampled coefficients will fall within �
SE from the parameter estimate (SE � standard error).

This step is iterated 100,000 times each with the null model and
experimental model estimates, yielding two sets of intercept, slope,
error variance, and autocorrelation coefficients.2 The first set of
100,000 coefficients represents the plausible patterns of participant
response in the absence of intervention, that is, the null effect. The
second set of 100,000 randomly sampled coefficients represents
the plausible patterns of participant response under the effect of
intervention, that is, the experimental treatment effect. Using each
set of sampled coefficients, one could create 100,000 AB time-
series with the specified level, trend, variability, and autocorrela-
tion. However, instead of creating AB data sets (like the original

2 Different iteration procedures were tested during the development of
ITSSIM. It was determined that sampling 10,000 time series from each
model yielded acceptable results that did not vary with the randomization
seed. However, 100,000 iterations yielded very stable results and did not
significantly increase software execution time. Therefore, the more inten-
sive procedure was used, though 10,000 iterations is considered sufficient.

Table 1
Hypothetical Parameter Estimates in an ITSSIM Analysis

Model Coefficient SE

Null model
Intercept 5.375 (2.752)
Slope �0.083 (0.540)
s 2.092 (0.501)

Exp. model
Intercept 0.375 (1.604)
Slope �0.125 (0.489)
s 0.845 (0.295)

Autocorrelation
r1 0.133 (0.244)

Figure 3. Simplified illustration of ITSSIM stages.
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observed data set), the ITSSIM method uses these simulated co-
efficients to create simultaneous B phase time-series.

Simulate B phase time-series. Recall from earlier that
ITSSIM does not control for time-dependent data patterns like
trend or autocorrelation. Instead, ITSSIM makes predictions using
estimates of level, trend, variability, and autocorrelation. Predic-
tions based on the A phase data are compared with predictions
made from the B phase. To make the two sets of predictions
directly comparable, they are simulated for the same interval of
time. After coefficients are randomly drawn from the parameters’
sampling distributions, a corresponding B phase time-series is
generated from each of the 100,000 simulated null effect models
and simulated experimental effect models. The result is 100,000
null effect time-series and 100,000 experimental effect time-series,
all corresponding to the same interval of time—the time interval of
the B phase.

Stage III: Effect Size Calculation

To find a treatment effect size, the mean of each simulated time
series is first calculated. This procedure yields two distributions of
means—one for the means of the simulated null effect time-series
and one for the means of simulated experimental effect time-series.
The distributions of means are approximately normal because of
the Central Limit Theorem. Thus, as with any large sample study
of control group and experimental group data, the ITSSIM null
effect distribution and the experimental effect distribution may be
compared to find a standardized mean difference, d (see Figure 1).
The effect size, d, may also be converted to an equivalent r or R2

effect size. The unstandardized mean difference, D, may also be
reported as an effect size.

Put another way, the simulation process in Stage II generates a
range of plausible mean scores based on the data in each phase
(i.e., the null effect distribution and the experimental effect distri-
bution). If A phase predictions are close to B phase predictions,
that is, if there is overlap between the two distributions, then the
effect size is considered to be relatively small. If A phase predic-
tions are B phase predictions are far apart, resulting in less overlap
between distributions, then the effect size will be larger.

Assumptions and Limitations

ITSSIM has several statistical assumptions and limitations
which investigators should consider before analyzing their data.
The violations of some assumptions, such as the expectation of
stable autocorrelation across phases, may not greatly affect results
(the degree of autocorrelation observed in brief time series is
relatively small, so cross-phase differences are also expected to be
minimal). The violation of other assumptions, like the assumption
of linear trends, may lead to less accurate results. ITSSIM assump-
tions include the following:

• A linear trend model is assumed. However, the Theil-Sen
estimator finds a best-fit line for any monotonic (i.e.,
linear or nonlinear) trend pattern, so the error introduced
by nonlinear trends are expected to be less severe than
with OLS regression.

• Lag-1 autoregressive error is assumed to be unaffected by
treatment. This assumption is consistent with the general
view that autocorrelated behavior is a function of the

participant and design rather than an effect of treatment
(e.g., Baer, 1988).

• Only lag-1 autoregressive error structures (�1) are mod-
eled. Moving average, integrated, and higher-order error
structures are not considered. Other single-case statistics
which model autocorrelation often assume a lag-1 autore-
gressive error structure (e.g., Moeyaert, Ferron, Beretvas,
& Van den Noortgate, 2014; Shadish, Hedges, et al.,
2014).

• The outcome variable is assumed to be continuous. Inves-
tigators analyzing time-series with count data (or other
noncontinuous data) should exercise caution in interpret-
ing results. For example, “percentage of time on task”
would be considered a continuous variable and would
therefore be appropriate for ITSSIM analysis; however,
“number of mands” would be considered a count variable
and may give inaccurate results. Statistics that assume
continuous outcome variables are frequently applied to
count data, though the effects of this violation assumption
are not clear. Future updates of ITSSIM software should
include options for noncontinuous data modeling.

• Normally distributed data are assumed in the current ver-
sion of ITSSIM software. Future software releases should
include options for modeling non-normal data distribu-
tions (e.g., Poisson, binomial, etc.).

• Level, trend, error variance, and autocorrelation parame-
ters are assumed to be independent of each other. There is
little published research to suggest whether this assump-
tion is tenable. It is expected that relationships between
these parameters vary from study to study, though more
exploration is needed to determine whether and how vio-
lations to this assumption would impact statistical results.

• The current version of ITSSIM software (1.0) does not
permit missing data—that is, all observations are assumed
to be recorded at equally spaced time intervals. This
assumption is shared by many nonoverlap and rank-based
methods, whereas regression-based methods tend to ac-
commodate missing data better. Data sets with missing
data may still be analyzed with ITSSIM; however, results
may be increasingly inaccurate as the percentage of miss-
ing data points increases. Further study is needed to better
assess the effect of missing data on ITSSIM, and future
software updates should accommodate incomplete data
sets.

ITSSIM Effect Size Interpretation

As noted above, ITSSIM effect sizes may be converted into
different metrics depending on the preferences and needs of the
investigator. ITSSIM software outputs the effect sizes frequently
used in clinical practice, intervention outcomes research, and
meta-analysis. A guide for reporting and interpreting these effect
size statistics is presented below, although investigators may find
other equally valid interpretations more suited to their needs.

D. The ITSSIM unstandardized mean difference, D, indicates
the average improvement during treatment, accounting for level,
trend, variability, and autocorrelation. D is reported in the original
metric of the outcome variable, for example, “D fewer intervals of
disruptive behavior” or “D percent increase in time on task.” D is
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not bounded (values have no set range) and may be positive or
negative. D may be particularly relevant to practitioners who wish
to report their treatment results in a clinically relevant way, though
it is less useful for synthesizing results across studies with different
outcome measures.

d. The ITSSIM standardized mean difference, d, indicates the
average improvement during treatment, accounting for level, trend,
variability, and autocorrelation. d is a standardized metric (D/
standard deviation of simulation distributions), and therefore d
values may be compared across studies that use different outcome
measures. d is not bounded (though most values are expected to
fall within � 5) and may be positive or negative.

r. The ITSSIM correlation coefficient, r, indicates the associ-
ation between intervention and outcome, accounting for level,
trend, variability, and autocorrelation. r is a standardized metric,
and therefore r values may be compared across studies that use
different outcome measures. r is bounded between �1 and �1. A
positive r indicates the outcome variable increased during inter-
vention after accounting for level, trend, variability, and autocor-
relation (i.e., a positive correlation between intervention and out-
come); a negative r indicates the outcome variable decreased
during intervention (i.e., a negative correlation between interven-
tion and outcome).

R2. The ITSSIM R2 effect size indicates the proportion of
outcome variance explained by the intervention effect, accounting
for level, trend, variability, and autocorrelation. R2 is a standard-
ized metric, and therefore R2 values may be compared across
studies that use different outcome measures. R2, which may be
reported as a percentage, is bounded between 0 and �1. As R2

decreases toward 0, less of the outcome is explained by the
intervention; as R2 approaches �1, more of the outcome is ex-
plained by the intervention.

A note about effect size conventions: “small,” “medium,”
and “large.” It is expected that ITSSIM effect sizes will vary
with the design, outcome measure, and domain of any given
single-case experiment. For example, a “small” effect size in an
applied behavior analysis (ABA) study might be considered quite
large in a single-case study of psychotherapy outcomes. In addi-
tion, many single-case statistics yield results that do not conform
to Cohen’s (1988) popular conventions for “small,” “medium,”
and “large” effect size (Parker et al., 2006). Therefore, when
assessing ITSSIM effect size magnitude, two interpretive strate-
gies are recommended in lieu of relying on standard cut-off scores
(an operation which Cohen described as “fraught with many dan-
gers”). First, single-case investigators, who are presumably experts
in their respective fields of research, can establish their own
interpretive benchmarks by applying specialized knowledge of
participant outcomes and visual analysis of data. These investiga-
tors are ultimately in the best position to determine what a “large”
change is in a clinically meaningful sense. Second, statistical
methods like ITSSIM should be used not only to determine
whether the effect of Intervention X is “large,” but also (and
perhaps more importantly) to determine whether the effect of
Intervention X is larger than the effect of Intervention Y. Identi-
fying and replicating the largest intervention effects is one goal
that statistical methods are well suited to address, in addition to
quantitative synthesis of research findings.

ITSSIM Software

ITSSIM is accessible to single-case investigators via free soft-
ware download at http://ktarlow.com/stats (Tarlow, 2018a). This is
a free standalone program that does not require additional statis-
tical computing software. When opened, the program prompts the
user to enter A phase and B phase data. After the observed data are
inputted, the program estimates the model parameters and per-
forms the simulations. All coefficients, standard errors, and effect
size statistics are reported in the software output. Use of ITSSIM
software requires no computing code or syntax, and should be easy
to implement for applied researchers and practitioners without
statistical computing experience. An example of ITSSIM software
input and output is presented in Figure 4.

Meta-Analysis With ITSSIM

Researchers are increasingly interested in the meta-analysis of
single-case designs. Synthesizing results across cases is one area
where statistical methods are expected to be superior to visual
analysis (Beretvas & Chung, 2008; Busk & Serlin, 1992; Maggin
& Odom, 2014; Scruggs & Mastropieri, 2001). Many single-case
statistics do not possess the properties necessary for meta-analysis;
however, ITSSIM is ideal for aggregating results across studies.

Within-case meta-analysis. There are three ways in which
single-case effect sizes may be combined. First, effects may be
combined within one individual. For example, consider an ABAB
design. An ITSSIM analysis will yield one effect size for the first
AB phase contrast and one effect size for the second AB phase
contrast. These within-case effects could be combined to yield
one overall effect size. However, the problem of autocorrelation
in time-series data described above also applies to the analysis
of multiple sequential effects sizes within one individual. Stan-
dard meta-analytic methods assume combined effects are inde-
pendent.

Across-case meta-analysis. The second way meta-analysis
may be applied to single-case research is the synthesis of effect
sizes across multiple cases, as in a multiple baseline design (the
most common single-case experimental design; Smith, 2012). For
example, consider a multiple baseline study with three AB time-
series for three participants; an effect size could be calculated for
each AB phase contrast, and then meta-analytically averaged
across all three cases. This type of single-case meta-analysis is less
likely to include violations of statistical assumptions, and standard
meta-analytic methods may be applied to combine effect sizes
across cases. The following section of this paper includes a dem-
onstration of this second type of single-case meta-analysis with
ITSSIM. In this field test, an ITSSIM effect size was calculated for
each AB phase contrast and then combined across cases.

Between-groups meta-analysis. Third, groups of cases may
be synthesized via meta-analysis. Between-groups meta-analyses
are also described as “subgroup analyses” (Borenstein, Hedges,
Higgins, & Rothstein, 2009). For example, an investigator may
wish to aggregate the findings across several studies, where each
study includes several cases. In this scenario, it is reasonable to
assume cases within the same study may be more similar to each
other than to cases from other studies. Put another way, the effect
sizes in the meta-analysis are not statistically independent, because
within-study and between-study variance both contribute to the
distribution of effects. Subgroup analyses can accurately model

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

598 TARLOW AND BROSSART

http://ktarlow.com/stats


these nested relationships (effect sizes within groups). Multilevel
models can also address autocorrelation in the meta-analysis of
within-subject effect sizes (the first type of meta-analysis de-
scribed above). Further exploration of multilevel modeling ex-
ceeds the scope of this paper; however, Van den Noortgate and

Onghena (2003, 2008), Jenson, Clark, Kircher, and Kristjansson
(2007), and Moeyaert et al. (2014) offered detailed presentations
of single-case multilevel solutions to these problems. Meta-
analysis models that account for moderator relationships could
also be applied to the synthesis of ITSSIM effect sizes across

Figure 4. Example of ITSSIM console with input and output. Software is available for download at http://
ktarlow.com/stats (Tarlow, 2018a).
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groups of cases, assuming cases within each group are independent
(Borenstein et al., 2009).

Meta-analysis software. Many statistical software packages
allow for quick aggregation of effect size statistics (e.g., RevMan,
Comprehensive Meta-Analysis, Open Meta-Analysis). For this
study, R code developed by Tarlow (2018b; http://ktarlow.com/
stats) and adapted from Borenstein et al. (2009) was used. To use
this R code, the user inputs a vector of effect size and variance
values (which in this case are found in the ITSSIM software
output)

d �- c(1.63, 3.06, 1.90, 2.28, 2.76, 4.48, 4.66, 1.60, 2.77)
v �- c(0.42, 0.67, 0.53, 0.56, 0.50, 1.21, 1.14, 0.38, 0.50)
After loading the code, effect size vector, and variance vector

into the R console, the user then calls the random-effects meta-
analysis function remeta() with the syntax remeta(d,v).

The results include a random-effects mean, as well as a p value,
confidence intervals, and heterogeneity statistics (Q, I2).

Field Test of ITSSIM

The primary goal of this paper is expository, to introduce the
rationale for computer-intensive simulation methods in single-case
research and explain ITSSIM’s use and interpretation. However,
an initial field test of ITSSIM was also conducted to determine
whether it performed similarly to other sophisticated single-case
analytic methods. The Journal of School Psychology published a
special issue (Shadish, 2014a) in which five research teams inde-
pendently analyzed the same single-case data from a study by
Lambert, Cartledge, Heward, and Lo (2006) using five different
multilevel methods. This data set was reanalyzed with ITSSIM and
an across-case meta-analysis, and results were compared with the
five previously published methods.

Summarizing the special issue, Shadish (2014a) found the re-
sults of the five comparison methods “reasonably consistent with
each other” (p. 112), and similar ITSSIM effect size estimates
would suggest ITSSIM is suitable for use in single-case research.
Like ITSSIM, all five previously published methods produced
unstandardized effect sizes; however, not all of the comparison
methods gave an equivalent standardized effect. Two approaches
(Shadish, Hedges, et al., 2014; Swaminathan, Rogers, & Horner,
2014) gave standardized mean differences like the ITSSIM d
statistic, which are straightforward to compare across studies. The
remaining three methods (Moeyaert et al., 2014; Rindskopf, 2014;
Shadish et al., 2014) gave log-odds ratios as the standardized
outcome metric, which are less intuitive when describing treatment
effects. Only two of the five methods (Moeyaert et al., 2014;
Swaminathan et al., 2014) modeled both trend and autocorrelation.
One method (Shadish et al., 2014) used generalized additive mod-
els (GAMs) to fit nonlinear trends. Two methods (Rindskopf,
2014; Swaminathan et al., 2014) used Bayesian estimation because
Bayesian methods are well-suited for analyzing small samples.
Two of the approaches (Moeyaert et al., 2014; Shadish et al., 2014)
involved testing multiple analytic models for goodness of fit
and/or agreement.

Results of the Field Test

Data from the nine students in Lambert et al.’s (2006) study
were analyzed with ITSSIM simulation software (Tarlow, 2018a).

The study used a reversal ABAB design for each student, so a total
of 18 AB phase contrasts were analyzed. Essentially, two across-
case meta-analyses were performed, one with all nine A1B1 effect
size estimates, and one with all nine A2B2 effect size estimates. A
random-effects meta-analysis model was used to aggregate the
A1B1 and A2B2 effect size estimates. The R code by Tarlow
(2018b) described above was used.3 Results of the ITSSIM anal-
yses are presented in Table 2. The A1B1 standardized effects
ranged from d � 1.60 to 4.66; all A1B1 effects were statistically
significant at the p � .05 level. The A2B2 standardized effects
ranged from d � �0.39 to 6.89; seven of the nine A2B2 effects
were statistically significant. The random-effects mean of the
A1B1 treatment effects was d � 2.56, p � .001, 95% CI [1.93,
3.19] (Q � 12.70, df � 8, p � .122); the random-effects mean of
the A2B2 treatment effects was d � 2.63, p � .001, 95% CI [1.35,
3.90] (Q � 56.23, df � 8, p � .001).

An unstandardized treatment effect, D, was also calculated for
each of the 18 AB phase contrasts. The A1B1 unstandardized
mean effect was D � 7.51 fewer intervals of disruptive behavior;
the A2B2 unstandardized mean effect was D � 8.43 fewer inter-
vals of disruptive behavior. The mean unstandardized effects for
ITSSIM and the other five methods is presented in Table 3, in
addition to the mean standardized effects (for the methods that
yielded an interpretable d-type effect size).

The results in Table 3 suggest ITSSIM yields slightly larger
mean effect sizes than the multilevel comparison methods. The
ITSSIM standardized mean effect sizes, d, were 0.05 to 0.29
standard deviations larger than the other reported effect sizes.
ITSSIM unstandardized D results were larger than the comparison
methods by about one to three intervals of disruptive behavior.

Discussion

The purpose of this study was to introduce a computer simula-
tion method, ITSSIM, for the analysis of single-case experimental
designs. ITSSIM incorporates baseline trend, level- and slope-
change, variability, and autocorrelation parameters, making it
more comprehensive than most single-case statistical models. In-

3 For demonstration purposes, the example R code provided for input-
ting effect size and variance vectors was based on the A1B1 effect size
estimates in Table 2 (standard errors were converted to variances).

Table 2
ITSSIM Standardized Effect Sizes for Lambert et al. (2006) Data

Participant

A1B1 Effect A2B2 Effect

d SE d SE

Student A1 1.63 0.65 3.71 0.80
Student A2 3.06 0.82 5.68 1.81
Student A3 1.90 0.73 3.72 0.85
Student A4 2.28 0.75 1.83 0.64
Student B1 2.76 0.71 3.20 0.72
Student B2 4.48 1.10 1.16 0.57
Student B3 4.66 1.07 6.89 1.32
Student B4 1.60 0.62 �0.39ns 0.52
Student B5 2.77 0.71 0.83ns 0.54
Random-effects mean 2.56 0.32 2.63 0.65

ns Not statistically significant at p � .05.
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vestigators may use ITSSIM to analyze a single case, and standard
meta-analysis methods may be used to combine multiple ITSSIM
effect sizes. In the present study, single-case data from Lambert et
al.’s (2006) study were reanalyzed and ITSSIM meta-analysis
results were compared to results from five other multilevel meth-
ods.

ITSSIM and Comparison Methods

Several of the comparison multilevel methods did not account
for trend and/or autocorrelation, and this is expected to account for
some of the discrepancy with ITSSIM effect sizes. This is true in
particular for the A2B2 phase contrast, where ITSSIM yielded the
largest effects and the comparison methods gave relatively smaller
ones. The Lambert et al. (2006) design included an ABAB rever-
sal. An increasing trend is visually apparent in many of the A2
phases as the participants return to the higher baseline level of
disruptive behavior. The return to baseline in the A2 reversal phase
often produces an inverted “V” shaped time-series in the A2B2
phase contrast, as the participant changes from an increasing to a
decreasing pattern of response—indeed, this inverted “V” is visu-
ally apparent in many of the Lambert et al. (2006) participants.
Analyses that do not account for this trend will tend to underesti-
mate effect sizes, because, unlike ITSSIM, their models do not
assume that the participants’ responses would have continued to
increase in the absence of treatment. Ma (2006), Allison and
Gorman (1993), and Schlosser et al. (2008) explored this very
issue as a limitation of some single-case effect size statistics that
do not model trend. Similarly, the failure to model autocorrelation
can attenuate some single-case effect size statistics (Tarlow, 2017);
however, the effect of autocorrelation on multilevel methods is not
well understood (Ugille et al., 2012).

Another possible reason ITSSIM yielded slightly larger effect
size estimates is the presence of missing data points in the Lambert
et al. (2006) data sets. The current version of ITSSIM software
(1.0) does not recognize missing data, so observed changes are
interpreted as occurring over a shorter period of time because
missing “gaps” in data are ignored; this may lead to steeper trend
estimates, and therefore larger effect size estimates. Additional
field testing of ITSSIM may reveal whether this overestimation is
consistent in other data sets, and whether the missing data limita-
tion is the reason.

Conclusions

The results of this small field test suggest ITSSIM merits further
use and study. Despite small but notable discrepancies, the simu-
lation method performed similarly to the comparison multilevel
modeling methods. ITSSIM software is also relatively easy to use
and interpret and may be a welcome tool for investigators who
seek a comprehensive tool for analysis of single-case data. ITSSIM
may also be a useful tool for visual raters because—in addition to
providing an overall effect size estimate—it isolates and outputs
level, trend, variance, and autocorrelation estimates, which are
noted in the visual analysis process (Kratochwill et al., 2010).

Three strategies are recommended for future evaluation of
ITSSIM. First, future studies should explore how well ITSSIM
agrees with visual analysis. Second, additional data sets should be
analyzed with ITSSIM, and results compared with other methods
(similar to the field test in this study). ITSSIM’s agreement with
visual raters and other established statistical methods is ultimately
the standard by which its viability should be evaluated. Third,
simulation methods have been used to empirically evaluate the
limitations other single-case statistics (e.g., Manolov & Solanas,
2008; Tarlow, 2017). This approach could be applied to ITSSIM
(i.e., “simulations of simulations”), though it is expected to be
computationally challenging.

While describing “the shape of things to come” in single-case
research, Shadish (2014b) suggested the ideal single-case statisti-
cal analysis would model trend and autocorrelation, and would
yield standardized effect sizes suitable for meta-analysis. Shadish
also stated that a good method would be accessible via easy-to-use
software: “The importance of the last criterion [accessibility] can-
not be overstated. Many clinical scientists will understandably use
simple statistical programs even if they are not state of the art” (p.
144). ITSSIM was developed in accordance with that request, and
while ITSSIM software is simple to use, its design was intended to
place comprehensive computer-intensive simulation methods into
the hands of any single-case investigator.

References

Allison, D. B., & Gorman, B. S. (1993). Calculating effect sizes for
meta-analysis: The case of the single case. Behaviour Research and
Therapy, 31, 621– 631. http://dx.doi.org/10.1016/0005-7967(93)
90115-B

Table 3
Six Analyses of Lambert et al. (2006) Data

Study Unstandardized effect size Standardized effect size

Shadish, Hedges, and Pustejovsky (2014)a 5.46 2.51
Shadish, Zuur, and Sullivan (2014)b 6.70 —
Rindskopf (2014)a,b 5.70 —
Moeyaert et al. (2014): continuous outcome 5.10–5.76 (A1B1) —

4.92–5.77 (A2B2)
Moeyaert et al. (2014): logistic outcomea,b 5.61 —
Swaminathan et al. (2014) 5.38 (A1B1) 2.47 (A1B1)

5.03 (A2B2) 2.34 (A2B2)
ITSSIM 7.51 (A1B1) 2.56 (A1B1)

8.43 (A2B2) 2.63 (A2B2)

a Trend not modeled. b Autocorrelation not modeled.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

601ITSSIM: INTERRUPTED TIME-SERIES SIMULATION

http://dx.doi.org/10.1016/0005-7967%2893%2990115-B
http://dx.doi.org/10.1016/0005-7967%2893%2990115-B


Anderson, R. L. (1942). Distribution of the serial correlation coefficient.
Annals of Mathematical Statistics, 13, 1–13. http://dx.doi.org/10.1214/
aoms/1177731638

APA Presidential Task Force on Evidence-Based Practice. (2006).
Evidence-based practice in psychology. American Psychologist, 61,
271–285. http://dx.doi.org/10.1037/0003-066X.61.4.271

Baer, D. M. (1988). An autocorrelated commentary on the need for a
different debate. Behavioral Assessment, 10, 295–297.

Barlow, D. H., & Hersen, M. (1984). Single-case experimental designs:
Strategies for studying behavior change (2nd ed.). Elmsford, NY: Per-
gamon Press.

Barlow, D. H., & Nock, M. K. (2009). Why can’t we be more idiographic
in our research? Perspectives on Psychological Science, 4, 19–21.
http://dx.doi.org/10.1111/j.1745-6924.2009.01088.x

Bartlett, M. S. (1946). On the theoretical specification and sampling
properties of autocorrelated time-series. Journal of the Royal Statistical
Society, 8, 27–41.

Beretvas, S. N., & Chung, H. (2008). A review of meta-analyses of
single-subject experimental designs: Methodological issues and practice.
Evidence-Based Communication Assessment and Intervention, 2, 129–
141. http://dx.doi.org/10.1080/17489530802446302

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009).
Introduction to meta-analysis. Hoboken, NJ: Wiley. http://dx.doi.org/10
.1002/9780470743386

Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting
and control. San Francisco, CA: Holden-Day.

Brossart, D. F., Parker, R. I., & Castillo, L. G. (2011). Robust regression
for single-case data analysis: How can it help? Behavior Research
Methods, 43, 710–719. http://dx.doi.org/10.3758/s13428-011-0079-7

Brossart, D. F., Parker, R. I., Olson, E. A., & Mahadevan, L. (2006). The
relationship between visual analysis and five statistical analyses in a
simple AB single-case research design. Behavior Modification, 30, 531–
563. http://dx.doi.org/10.1177/0145445503261167

Busk, P. L., & Serlin, R. C. (1992). Meta-analysis for single-case research.
In T. R. Kratochwill & J. R. Levin (Eds.), Single-case research design
and analysis: New directions for psychology and education (pp. 187–
212). Hillsdale, NJ: Erlbaum.

Campbell, J. M., & Herzinger, C. V. (2010). Statistics and single-subject
research methodology. In D. Gast (Ed.), Single-subject research meth-
odology in behavioral science (pp. 417–453). New York, NY: Rout-
ledge.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences
(2nd ed.). Mahwah, NJ: Erlbaum.

Cox, D. R. (1966). The null distribution of the first serial correlation
coefficient. Biometrika, 53(3/4), 623–626. http://dx.doi.org/10.2307/
2333676

Danov, S. E., & Symons, F. J. (2008). A survey evaluation of the reliability
of visual inspection and functional analysis graphs. Behavior Modifica-
tion, 32, 828–839. http://dx.doi.org/10.1177/0145445508318606

DeProspero, A., & Cohen, S. (1979). Inconsistent visual analyses of
intrasubject data. Journal of Applied Behavior Analysis, 12, 573–579.
http://dx.doi.org/10.1901/jaba.1979.12-573

Ferron, J. (2002). Reconsidering the use of the general linear model with
single-case data. Behavior Research Methods, Instruments, & Comput-
ers, 34, 324–331. http://dx.doi.org/10.3758/BF03195459

Glass, G. V., Willson, V. L., & Gottman, J. M. (1975). Design and analysis
of time-series experiments. Boulder, CO: Colorado Associated Univer-
sity Press.

Gorsuch, R. L. (1983). Three methods for analyzing limited time-series (N
of 1) data. Behavioral Assessment, 7, 141–154.

Harbst, K. B., Ottenbacher, K. J., & Harris, S. R. (1991). Interrater
reliability of therapists’ judgements of graphed data. Physical Therapy,
71, 107–115. http://dx.doi.org/10.1093/ptj/71.2.107

Hartmann, D. P., Gottman, J. M., Jones, R. R., Gardner, W., Kazdin, A. E.,
& Vaught, R. S. (1980). Interrupted time-series analysis and its appli-
cation to behavioral data. Journal of Applied Behavior Analysis, 13,
543–559. http://dx.doi.org/10.1901/jaba.1980.13-543

Hayes, S. C. (1981). Single case experimental design and empirical clinical
practice. Journal of Consulting and Clinical Psychology, 49, 193–211.
http://dx.doi.org/10.1037/0022-006X.49.2.193

Huitema, B. E., & McKean, J. W. (1998). Irrelevant autocorrelation in
least-squares intervention models. Psychological Methods, 3, 104–116.
http://dx.doi.org/10.1037/1082-989X.3.1.104

Huitema, B. E., & McKean, J. W. (2000a). A simple and powerful test for
autocorrelated errors in OLS intervention models. Psychological Re-
ports, 87, 3–20. http://dx.doi.org/10.2466/pr0.2000.87.1.3

Huitema, B. E., & McKean, J. W. (2000b). Design specification issues in
time-series intervention models. Educational and Psychological Mea-
surement, 60, 38–58. http://dx.doi.org/10.1177/00131640021970358

Jenson, W. R., Clark, E., Kircher, J. C., & Kristjansson, S. D. (2007).
Statistical reform: Evidence-based practice, meta-analyses, and single
subject designs. Psychology in the Schools, 44, 483–493. http://dx.doi
.org/10.1002/pits.20240

Jones, R. R., Vaught, R. S., & Weinrott, M. (1977). Time-series analysis in
operant research. Journal of Applied Behavior Analysis, 10, 151–166.
http://dx.doi.org/10.1901/jaba.1977.10-151

Jones, R. R., Weinrott, M. R., & Vaught, R. S. (1978). Effects of serial
dependency on the agreement between visual and statistical inference.
Journal of Applied Behavior Analysis, 11, 277–283. http://dx.doi.org/10
.1901/jaba.1978.11-277

Kazdin, A. E. (1982). Single-case research designs: Methods for clinical
and applied settings. New York, NY: Oxford University Press.

Kratochwill, T. R., Hitchcock, J., Horner, R. H., Levin, J. R., Odom, S. L.,
Rindskopf, D. M., & Shadish, W. R. (2010). Single-case design techni-
cal documentation. Washington, DC: What Works Clearinghouse.

Lambert, M. C., Cartledge, G., Heward, W. L., & Lo, Y. (2006). Effects of
response cards on disruptive behavior and academic responding during
math lessons by fourth-grade urban students. Journal of Positive Behav-
ior Interventions, 8, 88–99.

Lieberman, R. G., Yoder, P. J., Reichow, B., & Wolery, M. (2010). Visual
analysis of multiple baseline across participants graphs when change is
delayed. School Psychology Quarterly, 25, 28–44. http://dx.doi.org/10
.1037/a0018600

Ma, H. H. (2006). An alternative method for quantitative synthesis of
single-subject researches: Percentage of data points exceeding the me-
dian. Behavior Modification, 30, 598–617. http://dx.doi.org/10.1177/
0145445504272974

Maggin, D. M., & Odom, S. L. (2014). Evaluating single-case research
data for systematic review: A commentary for the special issue. Journal
of School Psychology, 52, 237–241. http://dx.doi.org/10.1016/j.jsp.2014
.01.002

Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13,
245–259. http://dx.doi.org/10.2307/1907187

Manolov, R. (2017). Linear trend in single-case visual and quantitative
analyses. Behavior Modification. Advance online publication. http://dx
.doi.org/10.1177/0145445517726301

Manolov, R., & Solanas, A. (2008). Comparing N � 1 effect size indices
in presence of autocorrelation. Behavior Modification, 32, 860–875.
http://dx.doi.org/10.1177/0145445508318866

Manolov, R., & Solanas, A. (2009). Percentage of nonoverlapping cor-
rected data. Behavior Research Methods, 41, 1262–1271. http://dx.doi
.org/10.3758/BRM.41.4.1262

Manolov, R., & Solanas, A. (2013). A comparison of mean phase differ-
ence and generalized least squares for analyzing single-case data. Jour-
nal of School Psychology, 51, 201–215. http://dx.doi.org/10.1016/j.jsp
.2012.12.005

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

602 TARLOW AND BROSSART

http://dx.doi.org/10.1214/aoms/1177731638
http://dx.doi.org/10.1214/aoms/1177731638
http://dx.doi.org/10.1037/0003-066X.61.4.271
http://dx.doi.org/10.1111/j.1745-6924.2009.01088.x
http://dx.doi.org/10.1080/17489530802446302
http://dx.doi.org/10.1002/9780470743386
http://dx.doi.org/10.1002/9780470743386
http://dx.doi.org/10.3758/s13428-011-0079-7
http://dx.doi.org/10.1177/0145445503261167
http://dx.doi.org/10.2307/2333676
http://dx.doi.org/10.2307/2333676
http://dx.doi.org/10.1177/0145445508318606
http://dx.doi.org/10.1901/jaba.1979.12-573
http://dx.doi.org/10.3758/BF03195459
http://dx.doi.org/10.1093/ptj/71.2.107
http://dx.doi.org/10.1901/jaba.1980.13-543
http://dx.doi.org/10.1037/0022-006X.49.2.193
http://dx.doi.org/10.1037/1082-989X.3.1.104
http://dx.doi.org/10.2466/pr0.2000.87.1.3
http://dx.doi.org/10.1177/00131640021970358
http://dx.doi.org/10.1002/pits.20240
http://dx.doi.org/10.1002/pits.20240
http://dx.doi.org/10.1901/jaba.1977.10-151
http://dx.doi.org/10.1901/jaba.1978.11-277
http://dx.doi.org/10.1901/jaba.1978.11-277
http://dx.doi.org/10.1037/a0018600
http://dx.doi.org/10.1037/a0018600
http://dx.doi.org/10.1177/0145445504272974
http://dx.doi.org/10.1177/0145445504272974
http://dx.doi.org/10.1016/j.jsp.2014.01.002
http://dx.doi.org/10.1016/j.jsp.2014.01.002
http://dx.doi.org/10.2307/1907187
http://dx.doi.org/10.1177/0145445517726301
http://dx.doi.org/10.1177/0145445517726301
http://dx.doi.org/10.1177/0145445508318866
http://dx.doi.org/10.3758/BRM.41.4.1262
http://dx.doi.org/10.3758/BRM.41.4.1262
http://dx.doi.org/10.1016/j.jsp.2012.12.005
http://dx.doi.org/10.1016/j.jsp.2012.12.005


Matyas, T. A., & Greenwood, K. M. (1990). Visual analysis of single-case
time series: Effects of variability, serial dependence, and magnitude of
intervention effects. Journal of Applied Behavior Analysis, 23, 341–351.
http://dx.doi.org/10.1901/jaba.1990.23-341

Moeyaert, M., Ferron, J. M., Beretvas, S. N., & Van den Noortgate, W.
(2014). From a single-level analysis to a multilevel analysis of single-
case experimental designs. Journal of School Psychology, 52, 191–211.
http://dx.doi.org/10.1016/j.jsp.2013.11.003

Morgan, D. L., & Morgan, R. K. (2001). Single-participant research
design. Bringing science to managed care. American Psychologist, 56,
119–127. http://dx.doi.org/10.1037/0003-066X.56.2.119

Ninci, J., Vannest, K. J., Willson, V., & Zhang, N. (2015). Interrater
agreement between visual analysts of single-case data: A meta-analysis.
Behavior Modification, 39, 510 –541. http://dx.doi.org/10.1177/
0145445515581327

Park, H., Marascuilo, L., & Gaylord-Ross, R. (1990). Visual inspection and
statistical analysis of single-case designs. Journal of Experimental Ed-
ucation, 58, 311–320. http://dx.doi.org/10.1080/00220973.1990
.10806545

Parker, R. I., & Brossart, D. F. (2003). Evaluating single-case research
data: A comparison of seven statistical methods. Behavior Therapy, 34,
189–211. http://dx.doi.org/10.1016/S0005-7894(03)80013-8

Parker, R. I., Cryer, J., & Byrns, G. (2006). Controlling baseline trend in
single-case research. School Psychology Quarterly, 21, 418–444. http://
dx.doi.org/10.1037/h0084131

Parker, R. I., & Vannest, K. J. (2012). Bottom-up analysis of single-case
research designs. Journal of Behavioral Education, 21, 254–265. http://
dx.doi.org/10.1007/s10864-012-9153-1

Parker, R. I., Vannest, K. J., & Davis, J. L. (2011). Effect size in single-
case research: A review of nine nonoverlap techniques. Behavior Mod-
ification, 35, 303–322. http://dx.doi.org/10.1177/0145445511399147

Parker, R. I., Vannest, K. J., Davis, J. L., & Sauber, S. B. (2011).
Combining nonoverlap and trend for single-case research: Tau-U. Be-
havior Therapy, 42, 284–299. http://dx.doi.org/10.1016/j.beth.2010.08
.006

Parsonson, B. S., & Baer, D. M. (1992). The visual analysis of data, and
current research into the stimuli controlling it. In T. R. Kratochwill &
J. R. Levin (Eds.), Single-case research design and analysis (pp. 15–
40). Hillsdale, NJ: Erlbaum.

Rindskopf, D. (2014). Nonlinear Bayesian analysis for single case designs.
Journal of School Psychology, 52, 179–189. http://dx.doi.org/10.1016/
j.jsp.2013.12.003

Schlosser, R. W., Lee, D. L., & Wendt, O. (2008). Application of the
percentage of non-overlapping data (PND) in systematic reviews and
meta-analyses: A systematic review of reporting characteristics.
Evidence-Based Communication Assessment and Intervention, 2, 163–
187. http://dx.doi.org/10.1080/17489530802505412

Scruggs, T. E., & Mastropieri, M. A. (2001). How to summarize single-
participant research: Ideas and applications. Exceptionality: A Special
Education Journal, 9, 227–244.

Sen, P. K. (1968). Estimates of the regression coefficient based on Kend-
all’s Tau. Journal of the American Statistical Association, 63, 1379–
1389. http://dx.doi.org/10.1080/01621459.1968.10480934

Shadish, W. R. (2014a). Analysis and meta-analysis of single-case designs:
An introduction. Journal of School Psychology, 52, 109–122. http://dx
.doi.org/10.1016/j.jsp.2013.11.009

Shadish, W. R. (2014b). Statistical analyses of single-case designs: The
shape of things to come. Current Directions in Psychological Science,
23, 139–146. http://dx.doi.org/10.1177/0963721414524773

Shadish, W. R., Hedges, L. V., Pustejovsky, J. E., Boyajian, J. G., Sullivan,
K. J., Andrade, A., & Barrientos, J. L. (2014). A d-statistic for single-
case designs that is equivalent to the usual between-groups d-statistic.

Neuropsychological Rehabilitation, 24(3– 4), 528 –553. http://dx.doi
.org/10.1080/09602011.2013.819021

Shadish, W. R., Rindskopf, D. M., & Hedges, L. V. (2008). The state of
science in the meta-analysis of single-case experimental designs.
Evidence-Based Communication Assessment and Intervention, 2, 188–
196. http://dx.doi.org/10.1080/17489530802581603

Shadish, W. R., Zuur, A. F., & Sullivan, K. J. (2014). Using generalized additive
(mixed) models to analyze single case designs. Journal of School Psychology,
52, 149–178. http://dx.doi.org/10.1016/j.jsp.2013.11.004

Smith, J. D. (2012). Single-case experimental designs: A systematic review of
published research and current standards. Psychological Methods, 17, 510–550.

Swaminathan, H., Rogers, H. J., & Horner, R. H. (2014). An effect size
measure and Bayesian analysis of single-case designs. Journal of School
Psychology, 52, 213–230. http://dx.doi.org/10.1016/j.jsp.2013.12.002

Tarlow, K. R. (2017). An improved rank correlation effect size statistic for
single-case designs: Baseline Corrected Tau. Behavior Modification, 41,
427–467. http://dx.doi.org/10.1177/0145445516676750

Tarlow, K. R. (2018a). ITSSIM: Interrupted time-series simulation, version
1.0. College Station, TX: Author. Retrieved from http://ktarlow.com/stats

Tarlow, K. R. (2018b, January). R functions for meta-analysis (R code).
Retrieved from http://ktarlow.com/stats

Theil, H. (1950). A rank-invariant method of linear and polynomial re-
gression analysis, I, II, and III. Proceedings of the Royal Netherlands
Academy of Sciences, 53, 386–392, 521–525, and 1397–1412.

Thompson, B. (2006). Foundations of behavioral statistics: An insight-
based approach. New York, NY: Guilford Press.

Ugille, M., Moeyaert, M., Beretvas, S. N., Ferron, J., & Van den Noortgate,
W. (2012). Multilevel meta-analysis of single-subject experimental de-
signs: A simulation study. Behavior Research Methods, 44, 1244–1254.
http://dx.doi.org/10.3758/s13428-012-0213-1

Van den Noortgate, W., & Onghena, P. (2003). Combining single-case
experimental data using hierarchical linear models. School Psychology
Quarterly, 18, 325–346. http://dx.doi.org/10.1521/scpq.18.3.325.22577

Van den Noortgate, W., & Onghena, P. (2008). A multilevel meta-analysis
of single-subject experimental design studies. Evidence-Based Commu-
nication Assessment and Intervention, 2, 142–151. http://dx.doi.org/10
.1080/17489530802505362

Vannest, K. J., Parker, R. I., Davis, J. L., Soares, D. A., & Smith, S. L.
(2012). The Theil-Sen slope for high-stakes decisions from progress
monitoring. Behavioral Disorders, 37, 271–280. http://dx.doi.org/10
.1177/019874291203700406

Wampold, B. E. (1988). Introduction. Behavioral Assessment, 10, 227–228.
White, O. R., & Haring, N. G. (1980). Exceptional teaching: A multimedia

training package. Columbus, OH: Merrill.
Wilcox, R. R. (1998). A note on the Theil-Sen regression estimator when the

regressor is random and the error term is heteroscedastic. Biometrical Journal
Biometrische Zeitschrift, 40, 261–268. http://dx.doi.org/10.1002/(SICI)1521-
4036(199807)40:3�261::AID-BIMJ261	3.0.CO;2-V

Wilcox, R. R. (2001). Fundamentals of modern statistical methods: Sub-
stantially improving power and accuracy. New York, NY: Springer-
Verlag. http://dx.doi.org/10.1007/978-1-4757-3522-2

Ximenes, V. M., Manolov, R., Solanas, A., & Quera, V. (2009). Factors affect-
ing visual inference in single-case designs. The Spanish Jour-
nal of Psychology, 12, 823–832. http://dx.doi.org/10.1017/S11387416000
02195

Yue, S., Pilon, P., Phinney, B., & Cavadias, G. (2002). The influence of
autocorrelation on the ability to detect trend in hydrological series. Hydro-
logical Processes, 16, 1807–1829. http://dx.doi.org/10.1002/hyp.1095

Received September 28, 2017
Revision received June 6, 2018

Accepted June 7, 2018 �

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

603ITSSIM: INTERRUPTED TIME-SERIES SIMULATION

http://dx.doi.org/10.1901/jaba.1990.23-341
http://dx.doi.org/10.1016/j.jsp.2013.11.003
http://dx.doi.org/10.1037/0003-066X.56.2.119
http://dx.doi.org/10.1177/0145445515581327
http://dx.doi.org/10.1177/0145445515581327
http://dx.doi.org/10.1080/00220973.1990.10806545
http://dx.doi.org/10.1080/00220973.1990.10806545
http://dx.doi.org/10.1016/S0005-7894%2803%2980013-8
http://dx.doi.org/10.1037/h0084131
http://dx.doi.org/10.1037/h0084131
http://dx.doi.org/10.1007/s10864-012-9153-1
http://dx.doi.org/10.1007/s10864-012-9153-1
http://dx.doi.org/10.1177/0145445511399147
http://dx.doi.org/10.1016/j.beth.2010.08.006
http://dx.doi.org/10.1016/j.beth.2010.08.006
http://dx.doi.org/10.1016/j.jsp.2013.12.003
http://dx.doi.org/10.1016/j.jsp.2013.12.003
http://dx.doi.org/10.1080/17489530802505412
http://dx.doi.org/10.1080/01621459.1968.10480934
http://dx.doi.org/10.1016/j.jsp.2013.11.009
http://dx.doi.org/10.1016/j.jsp.2013.11.009
http://dx.doi.org/10.1177/0963721414524773
http://dx.doi.org/10.1080/09602011.2013.819021
http://dx.doi.org/10.1080/09602011.2013.819021
http://dx.doi.org/10.1080/17489530802581603
http://dx.doi.org/10.1016/j.jsp.2013.11.004
http://dx.doi.org/10.1016/j.jsp.2013.12.002
http://dx.doi.org/10.1177/0145445516676750
http://ktarlow.com/stats
http://ktarlow.com/stats
http://dx.doi.org/10.3758/s13428-012-0213-1
http://dx.doi.org/10.1521/scpq.18.3.325.22577
http://dx.doi.org/10.1080/17489530802505362
http://dx.doi.org/10.1080/17489530802505362
http://dx.doi.org/10.1177/019874291203700406
http://dx.doi.org/10.1177/019874291203700406
http://dx.doi.org/10.1002/%28SICI%291521-4036%28199807%2940:3%3C261::AID-BIMJ261%3E3.0.CO;2-V
http://dx.doi.org/10.1002/%28SICI%291521-4036%28199807%2940:3%3C261::AID-BIMJ261%3E3.0.CO;2-V
http://dx.doi.org/10.1007/978-1-4757-3522-2
http://dx.doi.org/10.1017/S1138741600002195
http://dx.doi.org/10.1017/S1138741600002195
http://dx.doi.org/10.1002/hyp.1095

	A Comprehensive Method of Single-Case Data Analysis: Interrupted Time-Series Simulation (ITSSIM)
	Outline of Study
	Limitations of Statistical Control in Single-Case Data Analysis
	Baseline Trend
	Autocorrelation
	Simulation Methods Do Not Assume Perfectly Precise Control

	Interrupted Time-Series Simulation: ITSSIM
	How Is ITSSIM Different From Other Single-Case Statistics?
	Stage I: Parameter Estimation
	Estimate level and slope parameters: Theil-Sen robust regression
	Estimate variability parameters: Error variance
	Estimate lag-1 autocorrelation coefficient: Unbiased r1

	Stage II: Time-Series Simulation
	Randomly sample simulation parameters
	Simulate B phase time-series

	Stage III: Effect Size Calculation
	Assumptions and Limitations
	ITSSIM Effect Size Interpretation
	D
	d
	r
	R2
	A note about effect size conventions: “small,” “medium,” and  ...

	ITSSIM Software
	Meta-Analysis With ITSSIM
	Within-case meta-analysis
	Across-case meta-analysis
	Between-groups meta-analysis
	Meta-analysis software


	Field Test of ITSSIM
	Results of the Field Test
	Discussion
	ITSSIM and Comparison Methods
	Conclusions

	References


