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Abstract. Visual data analysis is an important first step when evaluating intervention effects. This also holds for analyzing data from single-case
experiments. Because most software packages do not offer customized facilities for constructing single-case graphs and are not particularly suited
to perform single-case visual data analyses, we created an R package to help researchers in making graphical representations of single-case data
and to transform graphical displays back to raw data. In addition to a basic plotting function, we included some tools to facilitate the use of three
interpretative principles for visually analyzing single-case data: plotting a measure of central location as a horizontal reference line; displaying
variability with (trimmed) range bars, range lines, and trended ranges; and displaying trends with a vertical line graph, by fitting a robust linear
trend, or by plotting running medians. Finally, we included a function to extract raw data values from published graphs.
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Visual analysis is the primary method of evaluating data
from single-case experiments (Busk & Marascuilo, 1992;
Kahng et al., 2010; Kazdin, 2011; Parsonson & Baer,
1992). Although several statistical alternatives have been
suggested over the years (for an overview, see, e.g.,
Campbell & Herzinger, 2010; Gorman & Allison, 1997;
Houle, 2009), these alternatives are only rarely used (e.g.,
Brossart, Parker, Olson, & Lakshmi, 2006; Carter, 2009;
Kahng et al., 2010). When looking at trends in single-case
research, Kratochwill and Brody (1978), Busk and
Marascuilo (1992), and Long and Hollin (1995) indicated
that in less than 10% of their sampled studies statistical anal-
yses were used. Parker et al. (2005) reanalyzed published
single-case data and found over 65% of the studies in their
sample relying on visual analysis alone. Effect sizes, confi-
dence intervals, and tests of statistical significance were
found in only 11% of the articles. A reason for this differ-
ence with group studies, in which statistical analyses are
most common, lies in the two conflicting traditions from
which single-case and group studies arose (Allison,
Franklin, & Heshka, 1992). Scientific group study research
relies on making inferences based on formal statistical pro-
cedures, largely based on the work of Ronald Fisher and
Jerzy Neyman. Single-case designs and applied behavior
analysis have their roots in the work of Murray Sidman
and Burrhus Frederic Skinner, who rejected statistical anal-
ysis and relied solely on visual analysis of the graphed data
(Allison et al., 1992). This dominance of visual analysis in
published single-case research does not necessarily mean
that it is generally accepted to be the best data-analytic

technique available. In past research, questions have been
raised concerning the consistency (or reliability), the sensi-
tivity, and the specificity of visual analysis.

Consistency

Visual analysis is often criticized for having no empirically
established formal decision guidelines, leaving room for
subjectivity and inconsistency. This is demonstrated by the
average poor interrater agreement that is found in several
studies (e.g., Bobrovitz & Ottenbacher, 1998; DeProspero
& Cohen, 1979; Fisch, 1998; Jones, Weinrott, & Vaught,
1978; Ottenbacher, 1990; Park, Marascuilo, & Gaylord-
Ross, 1990; Ximenes, Manolov, Solanas, & Quera, 2009).
This discouraging low consistency was not confirmed by
all researchers, with, for example, Kahng et al. (2010)
reporting a high level of agreement among different judges
when replicating the 1979 DeProspero and Cohen study.
Potential reasons for these contradicting results are proce-
dural differences in the instructions and response measures
used, and the fact that the earlier results could be outdated
because of more and better training opportunities that exist
for judges nowadays. Also, the alarming results found in
earlier studies could be partly explained by the difference
between real-life settings and the artificial settings used in
the studies (Brossart et al., 2006; Parsonson & Baer, 1992).

Several variables were shown to increase interrater
agreement: Training judges in using a standard trend estima-
tion procedure, prior knowledge of the participant of whom
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the data are graphed, and the use of judgmental aids (Skiba,
Deno, Marston, & Casey, 1989). The area of expertise
seems to have an influence, with statistically trained judges
showing more agreement than single-case analysts (Harbst,
Ottenbacher, & Harris, 1991). Some characteristics of the
data also play a role: changes in mean shift and level across
phases seem to yield higher agreement among judges than
changes in variability and slope (DeProspero & Cohen,
1979; Gibson & Ottenbacher, 1988; Knapp, 1983), whereas
data overlap and variability between phases seems to have
little influence (Gibson & Ottenbacher, 1988). The effect
of serial dependency is not clear. It is thought that autocor-
relation negatively influences agreement among judges
(Jones et al., 1978; Matyas & Greenwood, 1990), but some
studies only found weak effects (Gibson & Ottenbacher,
1988).

Sensitivity and Specificity

Proponents of visual analysis claim this method to be more
conservative and less sensitive than statistical analysis
(Kazdin, 2011). This insensitivity is seen as an advantage,
because small treatment effects will be ignored and only
very large effects, which are most likely also clinically (or
practically) relevant, will be detected (e.g., Carter, 2009;
Jones et al., 1978; Ottenbacher, 1990; Park et al., 1990;
Parsonson & Baer, 1992). Overlooking consistent but rela-
tively weak effects could however be problematic, for
instance in developing new theories or technologies
(Kazdin, 2011). Not all studies confirmed this claimed con-
servatism. Bobrovitz and Ottenbacher (1998) found a high
agreement between the results of visual and statistical anal-
yses, concluding that both methods are equally sensitive and
specific. Fisch (1998) found very high Type I error rates, and
Matyas and Greenwood (1990) and Normand and Bailey
(2006) found that participants were more likely to detect
nonexistent effects (Type I errors) than they were to omit
existing effects (Type II errors).

Since findings up till now are inconsistent and contradic-
tory, concerns about the error rates in visual analysis remain,
and questions about the quality of the validity studies have
been raised. One issue involves the unrealistic conditions
that are used, because validity studies differ in the extent
to which they resemble natural conditions. In real-life situa-
tions, visual analysts have to make their judgment in a par-
ticular context and can judge the degree of effectiveness of a
given intervention instead of being forced to make a dichot-
omous yes/no decision. Besides the available response
options, also characteristics of the judges (e.g., trained/
untrained) and the way of graphically presenting the data
(e.g., addition of trend lines) could be confounding factors
and more research is definitely needed (Brossart et al.,
2006; Carter, 2009; Furlong & Wampold, 1982; Parsonson
& Baer, 1992; Rojahn & Schulze, 1985; Wampold &
Furlong, 1981). Allison et al. (1992) state that Type I error
rates could even be larger in real-life applications because of
the use of response-guided experimentation. If each data
point is judged instantly and separately to determine how

to continue the experiment, these multiple analyses increase
the probability of making at least one Type I error. Allison
et al. (1992) therefore correct the estimate of 10% for Type
I error rates in visual analysis to 25%. Ferron and Jones
(2006) presented a method to control these Type I error
rates, by using random assignment and a ‘blind’ data
analyst.

A second issue concerns the validation criteria that are
used in the studies. Some studies (e.g., Normand & Bailey,
2006) constructed data sets and graphs with known charac-
teristics. However, many studies compare the results of
visual analysis with those of statistical analysis, like the
split-middle method (e.g., Ottenbacher, 1990; Richards,
Taylor, & Ramasamy, 1997), time-series analysis (e.g.,
Jones et al., 1978), and randomization tests (e.g., Park
et al., 1990) and different statistics tend to yield different
conclusions. Since no consensus exists on which statistical
test to use, without a power analysis none of them can be
taken as the standard to evaluate the performance of visual
judges (Brossart et al., 2006; Parsonson & Baer, 1992;
Ximenes et al., 2009). For experiments with relatively large
sample sizes, well-established procedures exist to determine
the effects of the intervention. Provided that some assump-
tions about the population are met, parametric statistical tests
(e.g., t-tests and ANOVAs) can be used validly. For small-n
experiments the same procedures as for large-n designs do
not necessarily apply because there are more doubts about
the plausibility of the assumptions. The most important
assumption that might be violated is that of serial indepen-
dence (Kazdin, 2011). Autocorrelation might however also
complicate the interpretations when visually analyzing sin-
gle-case data, since it can be confounded with the existence
of a treatment effect (e.g., Matyas & Greenwood, 1990;
Rojahn & Schulze, 1985). Several statistical techniques
were proposed for analyzing single-case data (for an over-
view, see, e.g., Campbell & Herzinger, 2010; Gorman &
Allison, 1997; Houle, 2009), but all were criticized for var-
ious reasons (e.g., they pose limitations on the researchers,
they tend to ignore clinical significance, . . .), and there is
still some debate on which of them is suitable. Several effect
size indices based on visual analysis criteria have also been
developed (e.g., Ma, 2006; Parker, Hagan-Burke, &
Vannest, 2007), but here too no clear guidelines exist yet
on which measure to use and how to interpret it.

The Intraocular Trauma Test:
Does the Result Hit You Between the Eyes?

Visual analysis is a necessary step when evaluating interven-
tion effects. Even statisticians increasingly emphasize the
importance of graphical data analysis. Wilkinson and the
APA task force on Statistical Inference (1999) and Wilkin-
son (2005), for example, advise to first look at the data
before computing any statistics. Most software packages,
however, are not specialized in constructing single-case
graphs. We hereby present a tool to aid researchers in mak-
ing graphical representations of their single-case data, and
transforming graphical displays back to raw data. To create
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the graphical functionalities, we used the programming envi-
ronment R. This was chosen because, as an open source
implementation of the S-PLUS language, it can be down-
loaded at no cost from the CRAN website (cran.r-pro-
ject.org). R is a very powerful and flexible tool, which has
very good graphical possibilities to obtain simple as well
as complex visual displays of the data, and which is able
to deal with unusual data sets and problems (Kelley,
2007). The R scripts that we created are available on our
website (ppw.kuleuven.be/english/research/mesrg).

Visual Analysis: A Software Tool

Kazdin (2011) defines visual analysis as ‘reaching a judgment
about the reliability or consistency of intervention effects by
visually examining the graphed data’ (p. 286). Visual analysis
depends on many characteristics of the data, but most impor-
tantly on the magnitude of changes across phases (differences
in the mean level of performance and level shifts at the
moment of phase change) and on the rate of those changes
(changes in trend and the latency of changes). Generally
speaking, three variables are taken into account: central loca-
tion (and level), variability, and trend (Franklin, Gorman,
Beasley,&Allison, 1997;Morley&Adams, 1991). Therefore
we did not only create a basic plotting function to display data
from single-case experiments, but we also incorporated some
tools to facilitate theuse of these three interpretative principles
of visual analysis.

From Data to Graph

Single-case data are usually displayed by plotting the mea-
sure of time on the abscissa and the dependent variable on
the ordinate, as displayed in Figure 1. For single-case alter-
nation designs (left panel), in which the basic strategy con-
sists of the rapid alternation of two or more conditions
within a single case, the data points of each condition are
connected, resulting in multiple lines in the same area of

the plot. In single-case phase designs (middle panel), com-
parisons are made within a time series and the case’s perfor-
mance is evaluated over time across baseline (A) and
intervention (B) phases. The graphical display connects
the data points in each phase, yielding an interrupted line
with a space between the phases. In this space, a vertical line
is placed to mark the phase change. Some contrasting find-
ings were published on the effects of these graphing conven-
tions. Knapp (1983) found that judges were more
conservative when the phases are not separated, whereas
Carter (2009) found no substantive evidence that judgments
were affected. If any effect, he found more Type I errors
when the graphs are presented without phase change lines
and when the data points across phase changes are con-
nected. Because of the lack of a clear opinion and because
these conventions are widely used, we decided to incorpo-
rate them in the graphical display of phase designs. Users
who wish to change these settings can easily do so by
slightly changing the R code. Data from multiple baseline
AB designs (right panel), in which several AB phase designs
are implemented simultaneously to different persons, behav-
iors, or settings, are displayed by plotting these different AB
designs beneath each other, so that the staggered administra-
tion of the intervention becomes clear. As can be seen in
Figure 1, standard labels are given to the conditions and
phases (‘‘A’’ and ‘‘B’’) and to the abscissa (‘‘Measurement
Times’’) and ordinate (‘‘Scores’’). These can be personalized
within the code.

These basic single-case graphs can be obtained by call-
ing the function graph (‘‘design’’), where with the
design argument the user can specify which design was used
in the experiment. Possibilities are a phase design (‘‘AB,’’
‘‘ABA,’’ ‘‘ABAB’’), an alternating treatments design
(‘‘ATD’’), and a multiple baseline AB design (‘‘MBD’’).
A more detailed explanation of these different design types
can be found in Barlow, Nock, and Hersen (2009). All the
functions explained below will work for the above-men-
tioned design types. For illustration purposes we will focus
on AB phase designs in what follows. The use of the general
interpretative principles of central location, variability, and

Figure 1. Graphical display of three hypothetical examples of single-case research design types. In the left panel an
alternating treatments design with two conditions is shown (graph(design = ‘‘ATD’’)). The middle panel displays an
ABAB phase design (graph(design = ‘‘ABAB’’)). And in the right panel an example of a multiple baseline design
with two units is given (graph(design = ‘‘MBD’’)).
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trend in the next paragraphs is largely based on Morley and
Adams (1991) and Franklin et al. (1997).

Central Location

Changes in level across phases appear to be the characteris-
tic that judges use most often to come to a decision and it is
the characteristic that is associated with the highest degree of
interrater agreement, rater certainty, and rater confidence
(Bailey, 1984; Fisch, 1998; Furlong & Wampold, 1982;
Gibson & Ottenbacher, 1988; Normand & Bailey, 2006;
Parsonson & Baer, 1992; Wampold & Furlong, 1981). Cen-
tral location can be incorporated in the single-case plot by
superimposing a horizontal reference line on the raw time
series. This will make treatment effects (demonstrated by
differences in level) more visible, while also providing a
basis for analyzing variability and trend. With the function
graph.CL(design,CL,tr) the user can choose which
measure of central tendency has to be plotted as a line par-
allel to the abscissa. An example of an AB phase design
where the mean is plotted as a reference line for each phase
is given in Figure 2. Note that there is no legend indicating
which measure of central tendency is displayed. Users can
mention this in the figure’s caption. This recommendation
also applies to most of the subsequent graphs.

The mean (CL = ‘‘mean’’) is not resistant to the influ-
ence of outliers, so sometimes it could be better to consider
the median (CL = ‘‘median’’). However, in small samples
the median may also not be very representative, because it
only takes into account the one or two central data points
of the whole data set. A possible solution here is to use
the broadened median (CL = ‘‘bmed’’), which is calculated

based on the three, four, five, or six middle values of the
data set, depending on the total number of data points (Mor-
ley & Adams, 1991). This way this measure is sensitive to a
larger proportion of the data than the median, while also
being robust to the influence of outliers.

The median, however, has a larger standard error than the
mean when the population is normally distributed (Wilcox,
2005). It is also strongly affected by the observations in the
center of the distribution, which is not the case for the mean.
Another way of dealing with the lack of robustness of the
mean as a measure of central tendency is by discarding the
observations in the tails of the distribution (the extreme
values) and calculating the so-called ‘‘trimmed mean’’ on
the remaining observations (CL = ‘‘trimmean’’). The per-
centage of observations that has to be removed from each end
of the distribution before computing the mean can be set with
the ‘‘tr’’ argument, and can be any value from 0 (regular
arithmetic mean) to 0.5. Usually 20% of the observations is
trimmed (so tr = 0.2).

While the trimmedmean removes a fixedproportion of the
observations,whether they are outliers or not,Huber’sM-esti-
mators of location (Huber & Ronchetti, 2009) first evaluate
each observation to determine if it actually is an outlier com-
pared to the rest of the data and then give less weight to those
outlying values. For this evaluation a constant K needs to be
specified that can haveany valuebetween0 and1, andwhich
actually comes down to balancing between robustness and
efficiency: when K = 0, the M-estimator equals the median
(maximally robust), while when K!1 it equals the arithme-
tic mean (maximally efficient) (Jeng, 2010). Therefore,
M-estimators of location could be considered as a generic
measure of central tendency of which the mean and the med-
ian are special cases. Usually a percentile of the standard nor-
mal distribution is chosen as the constant K. Wilcox (2005)
suggests using K = 1.28, which corresponds to the 90th per-
centile of the standard normal distribution and covers 80% of
the underlying distribution.When choosing a larger value for
K, the coverage gets larger until the whole distribution is cov-
ered when K!1 (as with the mean). In other words, the lar-
ger K gets, the wider the range of plausible observations
becomes, and the lesser observations will be classified as out-
liers. To display this generic measure of central tendency, the
CL argument should be put to ‘‘mest,’’ and the desired value
for the constant should be specified with the tr argument
(e.g., tr = 1.28). The function mest(x,bend = 1.28) from
Wilcox (2005) is used for the calculation of this measure. In
his book,Wilcox (2005) providesR functions for severalother
robust estimators of location. These estimators could also be
included by making slight adjustments to the R code.

Variability

Relative variation within and between phases is often over-
looked or ignored by visual analysts. This seems to be influ-
enced by the area of expertise of the judges: Whereas
statistically trained judges take into account the type of the
effect and the amount of variability across phases, experts in
visual analysis tend to look only at themagnitude of the effect
(Furlong & Wampold, 1982; Wampold & Furlong, 1981).

Figure 2. Hypothetical example of a possible display of
central location for an AB phase design. The mean is
plotted in each phase as a horizontal reference line
superimposed on the raw time-series data (graph.
CL(design = ‘‘AB’’, CL = ‘‘mean’’)).
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However, variability in the data could have an influenceon the
decisionsmade by the judges,with a higher degreeof variabil-
ity being related to higher Type I error rates (Matyas &
Greenwood, 1990). By graphically displaying some estimates
of variability, we want to separate variability from other
aspects in thedisplay, like level and trendwithwhich it is often
confounded. This way, we aim at making it easier to attend to
variability when visually analyzing the data.

The function graph.VAR(design,VAR,data-

set,CL,tr) was developed for this purpose. It includes
two commonly used methods to demonstrate variability:
range bars and range lines. Range bar graphs (VAR =
‘‘RB’’) consist of a vertical line for each phase, created by
connecting three points: An estimate of central tendency,
the minimum, and the maximum, while the raw data
points are usually not plotted. Depending on the desired
measure of central tendency, the CL argument should
be put at ‘‘mean,’’ ‘‘median,’’ ‘‘bmed,’’ ‘‘trimmean,’’
or ‘‘mest’’ (with the additional tr argument for the
trimmed mean and the M-estimator). In the upper left panel
of Figure 3, a range bar graph with the mean as a measure of
central tendency is displayed.

Range lines (VAR = ‘‘RL’’) are superimposed on the raw
data and therefore do include information about the timing of
the data points. This way information about variability is dis-
played, while at the same time highlighting possible trends. A
pair of lines is drawn parallel to the X-axis, and passing
through the lowest and the highest values for each phase.
An example is given in the upper middle panel of Figure 3.

One problem with these two methods of displaying var-
iation is that the range is severely influenced by the presence
of outliers. This may be overcome by using a trimmed range
(dataset = ‘‘trimmed’’), in which only a sample of the
data is used. The original data set is trimmed with 10–20%
by taking out the most extreme values (i.e., the lowest and
highest data points). This is demonstrated for range bars
(lower left panel) and range lines (lower middle panel) in
Figure 3. Notice that for range bars, the omitted values are
displayed as dots above and below the vertical line. Two
other problems with range bars and range lines are that var-
iability may be confounded with trend and that changes in
variability within phases are not displayed. This could be
solved by plotting a trended range (VAR = ‘‘TR’’), as dem-
onstrated in the upper right panel of Figure 3. For each
phase two lines are drawn, displaying possible changes in
variability. First the phase is divided into two halves along
the X-axis. Then the middle time point is determined for
each phase half, and the minimum and maximum values
of the dependent variable within that half are plotted at that
time point. Finally the minimum values of each half are con-
nected, as well as the maximum values, which results in two
lines. Trended ranges can also be applied to the data after the
lowest and the highest values in each half of the data set
have been trimmed, by setting the dataset argument to
‘‘trimmed’’ (lower right panel).

Trend

Whereas level changes between phases are the characteristic
associated with the highest degree of interrater agreement,

changes in trend are the characteristic that is most often
associated with inconsistent interpretations (Bailey, 1984;
Gibson & Ottenbacher, 1988; Parsonson & Baer, 1992).
Judges seem to focus primarily on shifts in level, being
unable to differentiate these from trends in the data, with
similar difficulties in detecting trends for experienced and
non-experienced judges (Fisch, 1998; Furlong & Wampold,
1982; Wampold & Furlong, 1981). After training judges in
using a standard trend estimation procedure, interrater agree-
ment as well as confidence in the judgments increased.
However, training does not necessarily lead to better perfor-
mance (Knapp, 1983; Richards et al., 1997). It can result in
more conservative judgments or make analysts rely only on
those criteria in which they have been trained. Besides train-
ing, the use of a judgmental aid may be important to visual
inferences (Skiba et al., 1989).

Morley and Adams (1991) define trend as ‘‘a systematic
shift in the value of the central location of the data set over
time’’ (p. 100). A quick impression of the presence of such a
trend can be obtained by drawing a vertical line graph, in
which the deviations from each data point to a measure of
central tendency are plotted against time. An example of
such a graph is given in the upper left corner of Figure 4.
If a positive trend would be present in the data, the vertical
lines on the left side would be hanging below the central
tendency line, and the vertical lines on the right side would
be standing on it. With the function graph.TREND(de-
sign,TREND,CL,tr) we included some possibilities to
display a potential trend in the data. Depending on the
desired central tendency measure, a vertical line graph can
be drawn by setting the TREND argument to ‘‘VLP’’ and
the CL argument to ‘‘mean,’’ ‘‘median,’’ ‘‘bmed,’’
‘‘trimmean,’’ or ‘‘mest’’ (and if necessary comple-
mented with the ‘‘tr’’ argument).

A trend in central location is usually displayed in single-
case graphs by superimposing a linear function on the raw
data, which shows if there is an increase or a decrease in
the behavior over time. There is evidence that the use of
such regression or trend lines can increase interrater agree-
ment, reliability, and decision accuracy (Bailey, 1984;
Fisher, Kelley, & Lomas, 2003; Hojem & Ottenbacher,
1988; Parsonson & Baer, 1992; Rojahn & Schulze, 1985;
Skiba et al., 1989). However, results are not all positive,
because in some cases trend lines created dependencies,
helped maintaining inconsistent judgments, and led to an
overemphasis of trend and the neglect of other factors like
level and variability (DeProspero & Cohen, 1979; Fisch,
1998; Harbst et al., 1991; Hojem & Ottenbacher, 1988;
Skiba, et al., 1989). Moreover, some researchers found no
significant effect of using trend lines on the accuracy of
decisions (Normand & Bailey, 2006). Fisch (1998) argues
that these contradictory results could be partly explained
by personal characteristics of the judges: experience seems
to be more important than the use of visual guidelines. Trend
lines are most easily drawn by ‘eyeballing’ a line that seems
to bisect the distribution. Research has however shown that
judges are not that good at deciding how and where exactly
this line should be placed (Mosteller, Siegel, Trapido, &
Youtz, 1981). Therefore we included some functions for fit-
ting a robust linear trend through several methods.
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The first possibility to draw a line that approximates the
best linear fit of the data consists of standard linear regres-
sion. When setting the TREND argument to ‘‘LSR’’
(least-squares regression), a regression line (Y = a + bX ) that
minimizes the squared vertical distances between the line
and the data points is calculated from the slope and the inter-
cept. An example is shown in the upper right corner of
Figure 4. Just as with eyeballing, this method is however

very much influenced by the presence of outliers. Several
alternative, more robust, estimators have been proposed to
replace ordinary least-squares regression. Wilcox (2005)
gives a good overview, together with R functions to calcu-
late those measures. The list of possibilities is very long
(e.g., least median of squares, least trimmed squares, regres-
sion M-estimators with many variations, S-estimators), and
we refer the interested reader to Wilcox (2005).

Figure 3. Hypothetical example of possible displays of variability for an AB phase design. The upper left panel
shows range bars, with the mean as a measure of central tendency (graph.VAR(design = ‘‘AB,’’ VAR = ‘‘RB,’’
CL = ‘‘mean’’)), and the upper middle panel displays range lines (graph.VAR(design = ‘‘AB,’’ VAR = ‘‘RL’’)). In
the upper right panel, a trended range is shown (graph. VAR(design = ‘‘AB,’’ VAR = ‘‘TR’’)). In the lower panels,
the trimmed versions of each variability display are plotted: trimmed range bars on the left, trimmed range lines in the
middle, and trimmed trended ranges on the right. This is done by adding the dataset = ‘‘trimmed’’ argument to the
R command, for example, for range lines: graph.VAR(design = ‘‘AB,’’ VAR = ‘‘RL,’’ dataset = ‘‘trimmed’’).
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Another possibility to display trend is the split-middle
method (TREND = ‘‘SM’’), which is quite straightforward
when phases have an even number of observations. The first
step involves dividing the phase into two halves along the X-
axis. When there are, for example, ten observations, the first
five observations are allocated to the left phase half, and the
last five observations are allocated to the right phase half. In
the second step two values are calculated for each phase
half: The median of the dependent variable and the middle
time value. This middle time value is the observation in
the middle of the time series for an uneven number of obser-
vations (e.g., the 3 in a series of five observations), whereas
for an even number of observations this is the average of the
two middle time values (e.g., 2.5 in a series of four observa-
tions), which is an imaginary time point. The final step of
the split-middle method connects the crossing of the median
(Y-axis) and the middle time value (X-axis) of both phase
halves. The same three steps are followed when phases have
an unequal number of observations, with as a difference that
in the first step of dividing the phase into two halves, one of
the halves will have an observation more than the other half.
Therefore the division is conducted twice: once with the
extra observation allocated to the left half and once with
the extra observation allocated to the right half. Step two
and step three are therefore also repeated, once for each

way of allocating the data points, which results in two lines
instead of one. The split-middle method is demonstrated in
the lower left panel of Figure 4: in phase A the situation of
an even number of observations is shown, while in phase B
the two split-middle lines for a phase with an uneven num-
ber of observations are displayed.

Whereas the split-middle method is sufficient to display
a linear trend for shorter time series (4–12 observations), the
resistant trend line fitting method (TREND = ‘‘RTL’’)
(Tukey, 1977) is more often used with larger time series.
Both methods are comparable in finding the medians of
the dependent variable and the middle time values, but with
resistant trend line fitting the data are divided in three sec-
tions along the X-axis instead of two. The slope of the resis-
tant trend line is determined by the change in the medians
between the two outer data sections, and the intercept is
computed using all three data sections to make the line pass
as closely as possible through the middle of the data. By
plotting the two half-lines, connecting the coordinates (inter-
section of the mid-time point and the median of the depen-
dent variable) of each of the three sections, it is possible to
check whether a linear fit is adequate. In our example, in the
lower right panel of Figure 4, the fit for the B phase is
almost linear, because the line connecting the coordinates
of the two outer sections runs nearly through the midpoint

Figure 4. Hypothetical examples of linear trend displays for AB phase designs. In the upper left panel, a vertical line graph
with deviations from themean is displayed (graph.TREND(design = ‘‘AB,’’TREND = ‘‘VLP,’’CL = ‘‘mean’’)). The
upper right panel shows trend lines by least-squares regression (graph.TREND(design = ‘‘AB,’’TREND = ‘‘LSR’’)).
Bottom left the split-middle method is demonstrated (graph.TREND(design = ‘‘AB,’’ TREND = ‘‘SM’’)) and in the
lower right corner we see the result of resistant trend line fitting (graph.TREND(design = ‘‘AB,’’ TREND = ‘‘RTL’’)).
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of the middle section. This is not the case for the data in the
A phase.

To further investigate the presence of a nonlinear trend in
the data, we included the possibility of displaying running
medians. With running medians, the time series is smoothed
bydividing it into successive segments of a given size and cal-
culating the median for each segment (Tukey, 1977). Three
sizes of segments are easy to use with time-series data: run-
ning medians of three (TREND = ‘‘RM3’’) can be considered
when there are 6–10 observations (left panel of Figure 5), and
for time series with more than 10 observations running medi-
ans of five (TREND = ‘‘RM5’’) could be used (middle panel).
These are calculated by finding the median of each batch of,
respectively, 3 or 5 successive data points and plotting this
value at the middle time point for that batch. This means that
the first median value is plotted at the second time point (mid-
dle of 1-2-3) for RM3 and at the third time point (middle of 1-
2-3-4-5) for RM5, reducing the time series by two (in the case
of RM3) or four (in the case of RM5) data points. These two
smoothers, however, often produce curves with high and low
points. Another way of estimating the median of five
successive values is by calculating running medians of batch
size four, and then averaging each successive pair
(TREND = ‘‘RM42’’). As can be seen in the right panel of
Figure 5 this results in a more smoothed curve. Of course
many other smoothers exist, such as kernel and lowess
smoothing. Wilcox (2005) provides R functions for making
plots of these smoothed functions, as well as for more robust
estimators.

From Graph to Data

To construct these graphical representations, one usually
needs the original data values. This is also the case when
statistically reanalyzing published data, for example to

integrate the results from a study in a meta-analysis. Unfor-
tunately, raw data are often not available from published
studies. Therefore, we included a function to extract the
values from existing graphs (adaptation of Timothée,
2010): graph.extract(MT,refX,refY,save). Sup-
pose that we want to do this for the data displayed in the left
panel of Figure 5. We need to supply the number of obser-
vations (MT = 15), two reference values for the X scale
(e.g., refX=c(2,14)), and two reference values for the
Y scale (e.g., refY=c(10,16)). When giving the com-
mand, a window pops up in which the user can indicate
where the jpeg file with the graph can be found. Then the
reference values should be located on the graph by clicking
with the left mouse button, first the X values and then the Y
values, and the same should be done sequentially for each
data point. As can be seen in the left panel of Figure 6,
the marked reference points are indicated with a blue cross
and the marked data points with a red circle. When finished,
the calibrated true data points are displayed as output in the
R console and plotted in a new graph. This is shown in the
right panel of Figure 6. If one wants to save these data val-
ues to a file, the save argument should be put to ‘‘yes,’’ and
another window will pop up where it is asked in which file
the data should be saved. Here one can create a new txt file
in the folder of choice. Notice that for this function the R
package ReadImages should be installed and the graphs of
which one wants to extract data should be in jpeg format.

An overview of all graphical functions is given in
Table 1. Table 2 summarizes the possible arguments.

Discussion

Although there have been serious concerns regarding the
consistency, sensitivity, and specificity of visual analysis

Figure 5. Examples of running medians superimposed on the hypothetical raw data. On the left, running medians of three
are shown (graph.TREND(design = ‘‘AB,’’ TREND = ‘‘RM3’’)). In the center we displayed running medians of five
(graph.TREND(design = ‘‘AB,’’ TREND = ‘‘RM5’’)), and on the right side running medians of four averaged by
pairs are plotted (graph.TREND(design = ‘‘AB,’’ TREND = ‘‘RM42’’)).

I. Bulté & P. Onghena: Visual Analysis of Single-Case Data 111

� 2011 Hogrefe Publishing Methodology 2012; Vol. 8(3):104–114



of single-case data, this kind of analysis remains a necessary
step in any thoughtful data-analytic procedure. In some
instances, it could even be considered a sufficient step.
When a visualization is that strong that the conclusions
‘‘hit you between the eyes’’ (what is sometimes called the
‘‘Intraocular Trauma Test’’), statistical inference is of little
relevance and p values do not really have a surplus value.
When the effect of a behavior modification intervention is
very clear, it is unnecessary to use complicated statistical
modeling techniques such as time-series analysis to state
the obvious. Graphs can also be sufficient when the purpose
is to give feedback to individual patients. Graphical displays
of single-case data are very well-suited for online monitor-
ing of the patient’s progress, by altering them every time
new data become available, and for communicating results
in an easy and understandable way. In other instances, of
course, when the effect is not that plain to see or when
the results have to be combined in a meta-analysis, statistical
data analysis might be a useful supplementary technique.
Even strong proponents of visual analysis acknowledge that
statistical results can be valuable in the absence of a stable
baseline, when results must be shared unambiguously with
other professionals, and when testing new treatments of
which the effects cannot be predicted (Parker et al., 2005).

This possible need for complementary statistical analy-
ses can be easily accomplished by working in R. We did
not only choose this programming language because of its
graphical possibilities, but also because it is a statistical
environment, which facilitates the combined use of visual

and statistical analyses. Moreover, as indicated before,
the flexibility of R enables users to change parts of the
code according to their demands (e.g., labels of the axes).
This requires some experience with the program, but this is
easily acquired. We acknowledge that there might be a
threshold to start working with R, because of the lower
user-friendliness of its command line interface. However,
to use the functions described in this paper in their stan-
dard versions, one does not need to know much about
R. After downloading and installing R (Hornik, 2010,
gives a detailed explanation of how to do this for Win-
dows, Macintosh, and UNIX), the functions can be read
into R by choosing ‘‘File’’ and selecting ‘‘Source R Code’’
from the top menu. For easy access and use, we suggest
saving the files containing the R functions (which can be
found on ppw.kuleuven.be/english/research/mesrg) on the
local disk. The text files (.txt) containing the data are most
easily made in a text editor (e.g., EditPad or NotePad) or
in Excel (saved as ‘‘text (tab delimited)’’). For phase
designs and alternating treatments designs the file should
consist of two columns: one containing the condition labels
(‘‘A’’ and ‘‘B’’) and the second with the observations. It is
important not to label the rows or columns. For multiple
baseline AB designs the data file should consist of these
two columns for each unit (so twice as many columns
as there are units). In the future, more and more forms
of graphical user interfaces for R will become available,
what will enhance the user-friendliness (but maybe also
decrease the flexibility).

Figure 6. Print screen of the graph.extract function. On the left is shown how the reference values and data points are
located on the graph. In the right panel the output is demonstrated: The calibrated true data points are returned in the R
console and a new graph is created as a quick visual check.

Table 1. Overview of graphical functions

Function name Description

graph(design) Makes a graphical representation of the single-case data
graph.CL(design,CL,tr) Plots a measure of central tendency as a horizontal reference

line superimposed on the raw time-series data
graph.VAR(design,VAR,dataset,CL,tr) Displays information about variability in the data
graph.TREND(design,TREND,CL,tr) Visualizes systematic shifts in central location of a data set over time
graph.extract(MT,refX,refY,save) Extracts data values from published graphs
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