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Both researchers and practitioners need to know more
about how laboratory treatment protocols translate to real-
world practice settings and how clinical innovations can be
systematically tested and communicated to a skeptical sci-
entific community. The single-case time-series study is well
suited to opening a productive discourse between practice
and laboratory. The appeal of case-based time-series stud-
ies, with multiple observations both before and after treat-
ment, is that they enrich our design palette by providing the
discipline another way to expand its empirical reach to
practice settings and its subject matter to the contingencies
of individual change. This article is a user’s guide to
conducting empirically respectable case-based time-series
studies in a clinical practice or laboratory setting.
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Continuously tracking the symptom status of one (or
a few) psychotherapy patients across baseline and
intervention phases can potentially yield data sets

well suited to revealing whether, when, and sometimes
even why an intervention works. Peterson (2004) predicted,
“Databases grounded in the actual experiences practitioners
encounter will provide a descriptive foundation for a sci-
ence that suits the nature we are trying to comprehend” (p.
205). Peterson is not alone in this sentiment. Barlow and
Hersen (1984), Bergin and Strupp (1970), and Kazdin
(1982, 1992) have long noted that the practitioner-gener-
ated case-based time-series design with baseline measure-
ment fully qualifies as a true experiment and that it ought
to stand alongside the more common group designs (e.g.,
the randomized controlled trial, or RCT) as a viable ap-
proach to expanding our knowledge about whether, how,
and for whom psychotherapy works.

Many of the early breakthrough discoveries of psy-
chological science were products of single-organism meth-
odologies (Ebbinghaus, 1913; Fechner, 1889; Kohler,
1925; Pavlov, 1927; Skinner, 1938; Watson, 1925; for a
review, see Morgan & Morgan, 2001). Skinner was a

particularly strong advocate of single-organism time-series
designs, probably because they allow for tracking what
interested him most: when, how, and under what conditions
new behavioral repertoires unfold in real time. In his view,
the dominant large-N paradigm in psychology and its focus
on group means actually obscured the anatomy of change.

Though the tradition of case-based time-series design
with baseline measurement persists in the operant literature
(R. R. Jones, Vaught, & Weinrott, 1978; Michael, 1974;
Morgan & Morgan, 2001), it has languished in the long
shadow cast by group methodologies for half a century.
This is testimony to the robust yet flexible properties of
group designs coupled with powerful statistical procedures
singularly well suited to managing intersubject variability
and questions of aggregate benefit. Two other factors may
contribute to the neglect of time-series designs. First, the
sheer prestige of group designs is so complete that the
questions psychologists ask about psychotherapy outcome
are almost always anchored to aggregate effect, the generic
question being: Is the group mean of the criterion measure
different for treated versus untreated subjects (or for dif-
ferent treatment conditions)? Hence Skinner’s (1938) ques-
tion about the anatomy of therapeutic change is rarely
considered, let alone answered (but see Lambert, Hansen,
& Finch, 2001; Price & Jones, 1998). Finally, the case-
based time-series study in psychotherapy outcome research
bears a special public relations burden of its own—its
association with the field’s early overreliance on unsub-
stantiated clinical anecdote.

Still, the call for empirically sturdy case studies sur-
vives and is now amplified. A number of researchers have
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expressed an interest in whether and how laboratory-vali-
dated interventions translate to practice settings (Jacobson
& Christensen, 1996; Westen & Bradley, 2005; Westen,
Novotny, & Thompson-Brenner, 2004). The American
Psychological Association’s (APA’s) Division 12 Task
Force on Promotion and Dissemination of Psychological
Procedures has explicitly recognized time-series designs as
important methodological approaches that can fairly test
treatment efficacy and/or effectiveness (Chambless & Ol-
lendick, 2001). The APA Task Force on Evidence-Based
Practice (2005) has endorsed systematic single-case studies
as contributing to effective psychological practice. Westen
and Bradley (2005) suggested that psychotherapy research-
ers “would do well to use clinical practice as a natural
laboratory for identifying promising treatment approaches”
(p. 267). The field seems to be recognizing that assaying
aggregate effect is not the only empirical window research-
ers have on the nature of therapeutic change and that
systematic observation of one or a few patients can be
scientifically sound and instructive.

Unfortunately, there has been no upsurge of empiri-
cally grounded time-series case studies; many practitioners
still despair over the relevance of psychotherapy research
to practice; no therapy has been designated as efficacious
on the weight of time-series data, as prescribed by APA
task forces; and arguments about efficacy and effectiveness
are framed almost exclusively in terms of group designs
(Jacobson & Christensen, 1996; Kotkin, Daviet, & Gurin,
1996; Morrison, Bradley, & Westen, 2003; Nathan, Stuart,
& Dolan, 2000; VandenBos, 1996; Westen & Morrison,
2001). Hence, despite clarion calls for its resurrection, the
time-series design in psychotherapy outcome research lies
dormant. Why?

We agree with Peterson’s (2004) analysis that the
enthronement of nomothetic group designs has “pushed

every other approach downward, leaving case study de-
spised or outcast entirely at the bottom.” (p. 205). How-
ever, we do not believe the neglect of case-based research
is entirely a matter of a recalcitrant science unwilling to
entertain the notion of a carefully conducted case study.
Part of the problem resides with practitioners. Even with
sincere and immediate interest in what works for their
patients, practitioners are sometimes intimidated by (or
dismissive of) research and often unfamiliar with the case-
based time-series options. This is unfortunate. Though for
the typical practitioner a controlled large-group study is
impractical, with some initiative and imagination the same
practitioner can carry out one or more perfectly viable
time-series studies.

Their appealing attributes aside, no time-series study
or aggregation of time-series studies can provide the sharp-
edged causal clarity of well-conducted RCTs for outcome
evaluation. Nothing in this article alters the reality that
group experimental designs (e.g., RCTs) are rightly the
mainstay of our clinical science. Large-N experimental
studies are unambiguously the designs of choice when
psychologists ask questions regarding aggregate effect, es-
pecially when social policy matters are in the mix.

Neither does the time-series design with baseline mea-
sures define the only approach to evidence-based case
study. The statistically derived and robust notion of “reli-
able and clinically significant change” (Jacobson, Roberts,
Berns, & McGlinchey, 1999; Jacobson & Truax, 1991) has
been influential in case studies where only one pre- and one
postmeasure are available. Lambert and others have cham-
pioned a patient-focused, bottom-up approach to outcome
assessment, with emphasis on frequent assessment during
therapy, statistically derived benchmarks for progress, and
close examination of aggregate growth curves and dose
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effects (Barkham, Gilbert, Connell, Marshall, & Twigg,
2005; Evans, Margison, & Barkham, 1998; Haynes &
O’Brien, 2000; Lambert, 2005; Lambert et al., 2001, 2002).
In addition, E. E. Jones and his colleagues (E. E. Jones,
Ghannam, Nigg, & Dyer, 1993; Price & Jones, 1998) have
proposed an elegant paradigm for case studies in psycho-
therapy process research using a Q-set methodology. The
fundamental appeal of case-based time-series studies as we
describe them here, with multiple observations both before
and after treatment, is that they enrich our design palette,
providing the discipline another way to expand its empir-
ical reach to practice settings and its subject matter to the
contingencies of individual change.

This article is a user’s guide to conducting case-based
time-series studies in a practice setting. First, we offer a
sampler of clinical research questions that can be ad-
dressed by case-based studies. Second, we construct a
hypothetical case that illustrates the structure of a time-
series project now being conducted in a university-based
outpatient psychotherapy clinic. This case also familiar-
izes the reader with the data array of a time-series study.
Third, we present two actual case studies, each carried
out in a different outpatient setting. Fourth, we move to
the logistics of how a time-series study is efficiently
conducted in an applied setting. Finally, we provide a
step-by-step description of simulation modeling analysis
(SMA) for time-series data and how the practitioner can
use freely available software to analyze his or her real-
world clinical practice data (i.e., relatively short streams
of time-series data). The use of SMA requires minimal
statistical sophistication, and an Appendix is provided
for further reference.

The Domain of Clinical Research
Questions Addressed by Case-Based
Time-Series Studies
A survey of the many varieties of time-series designs is
beyond the scope of this article. There are a number of
comprehensive descriptions of these powerful methodolog-
ical tools (e.g., Barlow & Hersen, 1984, and Kazdin, 1982).
We focus primarily on the simple A–B (pre–post) design
because it is the most fundamental unit of inferential anal-
ysis across time-series designs and hence relevant to all of
them. Further, the logistics of an outpatient setting are such
that an A–B design (with follow-up when possible) is a
good place for a seriously curious practitioner to begin.

Broadly speaking, time-series designs in psychother-
apy can address two types of questions: questions of im-
provement (Does the patient get better following onset of
treatment?) and questions of process change (How does
change unfold during treatment?). On both counts, the
time-series design can be a vehicle for practice-generated
knowledge to inform laboratory protocol and for labora-
tory-generated knowledge to inform clinical practice.

Questions of Improvement: Looking for an
Effect of Phase
Questions of improvement are essentially questions about
whether onset of treatment is associated with improvement.
Put another way, the generic time-series improvement
question asks whether there is an effect of phase: Is there
meaningful change in the patient’s key symptoms from the
pretreatment baseline condition (Phase A) to the treatment
condition (Phase B)? If there is improvement, is it note-
worthy? The critical comparison is between the level of
symptom scores reported or observed during Phase A (i.e.,
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before treatment onset) and the level of scores or observa-
tions during Phase B (after treatment onset). The size and
direction of the difference on each outcome variable are
then the grist for statistical analysis. Because the focus of a
time-series improvement study is the comparison of symp-
tom scores between two phases (typically pre- versus post-
treatment), we refer to the analysis as a phase-effect anal-
ysis.

How Time-Series Improvement Studies Help
Bridge the Gap Between Practice and the
Laboratory
Laboratory research can be critically informed by carefully
designed practitioner-conducted time-series improvement
studies. For instance, practice-generated knowledge influ-
ences laboratory work when a practitioner reports a number
of time-series cases testing whether an established empir-
ically supported therapy (EST) for anxiety disorder might
also benefit patients with impulse control disorder. By
critically evaluating the practitioner’s study, the laboratory
researcher weighs whether the EST might have broader
applications. This might then influence whether and how
the laboratory researcher approaches future work on this
technique. Similarly, when a practitioner conducts a time-
series improvement study testing a new innovative therapy
for hypertension, the laboratory researcher can assess the
evidence and decide whether the new technique is prom-
ising enough to merit a closer look. Perhaps an RCT is in
order. In both examples, evidence is brought to the table by
the practitioner in a form that is epistemologically sound
and therefore accessible and useful to the laboratory re-
searcher.

Of course, there is nothing to stop a laboratory re-
searcher from conducting her own time-series benefit stud-

ies. In doing so, she brings laboratory-generated knowledge
to bear directly on clinical practice. For instance, she might
test whether her EST for anorexia nervosa alone might also
be associated with reduced symptoms among a series of
anorectic patients comorbid for borderline personality dis-
order. In doing so, she brings to the table evidence that is
singularly well suited for practitioners who comprehend the
ideographic nature of the time-series format and who in-
deed frequently encounter patients with comorbid condi-
tions (Westen & Bradley, 2005). In addition, the laboratory
researcher has empirical findings on which she can base
decisions as to whether this approach to comorbidity merits
further investigation.

Questions of Process Change: Looking for
Patterns of Change During Treatment
Questions of process change address how change unfolds
over time and under what circumstances: the types of
questions that interested Skinner (1938) the most. In con-
trast to improvement designs that require a comparison
across two phases, process-change designs analyze change
within one phase (usually the treatment phase). There are
two types of process-change questions: univariate and mul-
tivariate. Univariate process change is addressed when one
continuously tracks a single variable (e.g., symptom status)
during treatment. One asks: Once in therapy, when does the
patient begin to improve (latency)? At what pace does this
improvement occur (slope)? These questions usually re-
quire only descriptive statistics.

Multivariate process change is addressed when one
simultaneously tracks two or more processes during the
course of treatment. One can then address mechanisms of
change as well as sequencing. For instance, if during treat-
ment one continuously tracks changes on a key symptom
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(e.g., frequency of self-injurious behavior) against changes
in the nature of the therapeutic interaction (e.g., status of
rapport), one can ask: How is ongoing clinical improve-
ment (a symptom variable) related to quality or frequency
of ongoing events in-session (an intervention variable)? If
symptom and intervention variables are related, in what
order do they change? For example, are changes in rapport
followed by symptom change in some systematic manner?
Or does improvement (or decline) in symptom status pre-
cede change in rapport?

When one instead simultaneously tracks two key
symptom variables, one can ask: Is there a sequence of
improvement such that changes in Symptom A are fol-
lowed by changes in Symptom B? If so, what is the lag?
Whether tracking changes in symptom against changes in
therapeutic interaction or symptom against symptom, the
analysis is multivariate and must be sensitive to how mul-
tiple variables covary in real time. These analyses may
likely involve cross-lagged correlations (discussed later).

How Time-Series Process-Change Studies
Help Bridge the Gap Between Practice and
the Laboratory
A practitioner might inform laboratory researchers about
the change process when she conducts a number of time-
series studies that track pain ratings, quality of life, and key
intervention parameters among phantom limb pain patients
before, during, and after psychological intervention. Lab-
oratory researchers can then evaluate this evidence to look
beyond benefit to questions of how, when, and under what
specific therapeutic conditions phantom limb pain resolves.
The findings might guide the timing and sequence of future
laboratory interventions and offer leads to how the tech-

nique can be rendered maximally effective in as brief a
time as possible. Similarly, if a theory predicts that an
in-session technique or process (e.g., rapport, congruent
empathy, exposure to feared stimuli, reinforcement) is mu-
tative and should be followed by improvement, a practitio-
ner-conducted time-series study can bring evidence to bear
on the issue by simultaneously tracking the frequency or
quality of these in-session events against the patient’s day-
to-day symptom ratings. There ought to be a relationship
between symptom change and the purported mutative in-
therapy event such that symptom change follows in-session
events. Of course, similar studies conducted within a lab-
oratory setting can inform clinicians about how change
unfolds during the course of therapy, what aspects of the
therapeutic environment are associated with benefit, and
the extent of change to be expected.

A Real Practice-Based Time-Series
Project Illustrated by an Imaginary
Case
Beginning in 2002, the University of Tennessee Psycho-
logical Clinic has carried out empirically grounded case-
based time-series studies with adult psychotherapy pa-
tients. The logistics of the Practice–Research Integrative
Project (PRIP) evolved to better fit the pragmatic contours
of the clinic setting (Nash, 2005). As such, the PRIP is a
natural point of departure for this guide to conducting
time-series studies in an outpatient setting.

The PRIP’s structure is primarily (though not exclu-
sively) a benefit design with baseline and treatment phases
(see Figure 1). Follow-up at six months posttreatment is
now part of the routine. Hence, these studies begin as A–B

Figure 1
Hypothetical Results Demonstrating a Typical Data Stream Encountered in Time-Series Studies: A Five-Week
Intervention for Pain

0

1

2

3

4

5

6

7

8

9

10

1 3 5 7 9 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 1 3 5 7 9 11 13

Day

D
a
il
y
 P

a
in

 R
a
ti

n
g

Baseline
9 Days

Treatment
5 Weeks

6-Month
Follow-up

81February–March 2008 ● American Psychologist



designs with a generic protocol as follows: During a one- to
two-week baseline phase and throughout the treatment
phase, patients daily rate their symptom status on a general
distress item (a Likert-type item ranging from 1 to 10) and
two to three behavioral or self-report items well suited to
the case formulation. The content of these latter items is
crafted at intake by the therapist. Baseline observations for
each patient typically number between 7 and 14. Treatment
observations number at least 35. The total number of ob-
servations and the imbalance between baseline/treatment
observations are typical of empirically grounded case stud-
ies in the literature (Center, Skiba, & Casey, 1985–1986;
R. R. Jones et al., 1977). All patients complete the Out-
come Questionnaire–45 (OQ-45; Lambert et al., 1996) at
intake and monthly during treatment. In addition to this
generic time-series protocol, therapists can add extra daily
and monthly measures consistent with the treatment plan
and research agenda.

Our hypothetical case illustrates in pure form the types
of data streams generated by the PRIP protocol (see Figure
1). We posit an imaginary 53-year-old chronic pain patient
treated over five sessions using a cognitive–behavioral
approach coupled with self-hypnosis. The three measures
tracked over time are as follows: daily pain intensity rating
(from 1, no pain, to 10, worst pain imaginable); mood
rating (from 1, never bothered by depression, to 10, unre-
lenting and severe depression), and the patient’s reported
level of distress (from 1, none, to 10, severe). For the
purposes of this example, we show the pain rating alone.

Preliminary visual inspection of the hypothetical daily
pain ratings (see Figure 1) might suggest improvement
from baseline to treatment (baseline mean � 7.78; treat-
ment mean � 3.29). Then again, even when seasoned
judges use visual inspection of single-case data streams,
they are prone to overestimate the effect of treatment
(DeProspero & Cohen, 1979; Furlong & Wampold, 1982;
R. R. Jones, Weinrott, & Vaught, 1978; Ottenbacher,
1993). This is especially true when, as in our case, obser-
vations are in principle, and in fact, not independent of one
another (Borckardt, Murphy, Nash, & Shaw, 2004; R. R.
Jones et al., 1978; Matyas & Greenwood, 1990; Robey,
Schultz, Crawford, & Sinner, 1999). Matyas and Green-
wood found visual inspection of these types of data streams
to generate Type I error rates (false positives) of from 16%
to 84%. Indeed, neither visual inspection nor conventional
statistics are to be relied on for analyzing single-patient
time-series studies (Robey et al., 1999) because such time-
series data are autocorrelated.

What Is Autocorrelation?
Conventional parametric and nonparametric statistics as-
sume that observations are independent. For instance, the
result of a coin toss on Trial 1 does not influence the result
on Trials 2 and 3, and so on. No matter how many times in
a row “tails” is obtained, the probability that the next toss
will be “heads” is unimpeachably still 50%. Hence, each
observation (i.e., result of a coin toss) is independent.
Similarly, in group designs, Subject 1’s height is indepen-
dent of Subject 2’s height. Whether coin toss or height, one

observation does not influence another. However, single-
case time-series observations, such as the pain ratings in
Figure 1, are in principle not independent. After all, the
same person is generating the pain ratings. These data are
in fact autocorrelated.

Simply put, a series of observations (as in the pain
ratings in Figure 1) is said to be autocorrelated if the value
of one observation depends (at least in part) on the value of
one or more of the immediately preceding observations.
Later observations are explained by earlier ones. Weather
is autocorrelated. What the noon temperature will be on
Wednesday is predicted by what the noon temperature was
on Tuesday, and to a lesser extent what the noon temper-
ature was on Monday or Sunday. Although the weather is
certainly variable, how it changes from hour to hour, day to
day, and season to season is to a degree lawful and struc-
tured, in a way that is not true when moving from one coin
toss to the next. The stock market is autocorrelated. The
value of the Dow Jones index at 2:00 p.m. is predicted by
what it was at 1:00 p.m. if for no other reason than that the
2:00 p.m. value must proceed from the 1:00 p.m. value.
Indeed, autocorrelation is an inevitable aspect of the peri-
odicity, trending, and gradualism that one encounters reg-
ularly when tracking change over time in a single individ-
ual (weight loss, heart rate, tissue or psychological repair)
or system (corporate earnings, birth rate). Autocorrelation
is sometimes referred to as serial dependence. An early
application of these notions to developmental psychology
was described by Gottman and Ringland (1981).

How Is Autocorrelation Calculated?
How do we calculate the degree of autocorrelation? The
primary focus of autocorrelation in the behavioral sciences
is the Lag 1 correlation. The Lag 1 correlation is the degree
to which an observation at Time K predicts the observation
that comes immediately after it (at Time K � 1). Though
calculation of autocorrelation is easily accomplished with
statistical software, we believe that a one-time walk-
through of its logic will inform the reader of what auto-
correlation is conceptually.

Table 1 illustrates how a Lag 1 correlation could be
calculated using data from our hypothetical case in Figure
1. To save space, we calculated the Lag 1 autocorrelation
for the 35 pain ratings of the treatment phase only, but the
principle can be applied to the entire data stream or to
individual phase data streams. We expect that the pain
ratings of our hypothetical patient in Figure 1 will be
autocorrelated because all the ratings come from one per-
son. The Lag 1 autocorrelation is the aggregate extent to
which pain at Time 1 predicts pain at Time 2, pain at Time
2 predicts pain at Time 3, Pain at Time 3 predicts pain at
Time 4, and so on. Hence, the Lag 1 correlation is simply
the correlation between each data point and the point im-
mediately following it. In Table 1, both Columns A and B
depict the sequence of pain ratings as they occurred across
time over the 35 observations of the treatment phase. The
arrow from each pain rating in Column A leads to the pain
rating that immediately follows it (in Column B). For
example, the pain rating of 6 at Time 1 (in Column A) leads
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to the pain rating of 7 at Time 2 in Column B. Hence the
first pair in the Lag 1 correlation calculation is 6, 7 (Col-
umn C). The Time 2 pain rating of 7 in Column A leads to
the Time 3 pain rating of 6 in Column B; hence 7, 6 is
entered in Column C. This process is followed through to
the end of the data stream. The correlation of the pairs in
Column C is the Lag 1 autocorrelation for the treatment
phase, r(Lag 1) � .81. The pain ratings are strongly auto-
correlated during the treatment phase. When we calculate
the autocorrelation for the baseline and treatment phases
taken together, the Lag 1 autocorrelation is .85.

Why Is Autocorrelation Important?

Autocorrelation is ubiquitous in behavioral data (Busk &
Marascuilo, 1998; Sharpley & Alavosius, 1988). Under
most circumstances, if the clinical investigator ignores au-
tocorrelation with time-series data, he or she runs an un-
acceptably high risk of making a Type I error—that is, he
or she infers that there is an effect of phase (from baseline
to treatment) when in fact there is not. For this reason, all
data sets in this article were analyzed using SMA for
time-series, a statistical approach that accounts for auto-
correlation and one that we describe later in detail.

Applying SMA to the Hypothetical Case

The key question for our hypothetical data set (see Figure
1) is an improvement (i.e., between-phases) question: Is the
noted decrease in pain (from a mean of 7.78 during the
baseline phase to a mean of 3.29 during the treatment
phase) sufficiently improbable to justify our setting aside
random variation in pain ratings as a viable explanation of
the difference between pain in the baseline and treatment
phases? In this case it is. Statistical analysis via SMA
reveals that mere random variation of pain reports is an
unlikely explanation of the phase difference from a base-
line mean of 7.78 to the treatment mean of 3.29, r(44) �
�.69, p � .049, even after controlling for autocorrelation.
Further, at the six-month follow-up, the pain relief realized
during treatment has remained fairly stable, with no dis-
cernible deterioration in relief: mean pain at treatment �
3.29; mean pain at follow-up � 2.21; r(49) � �.26, p �
.51, ns. It is important to note that by comparing pain at
baseline with pain at follow-up, we further confirm that at
six months posttreatment the patient is experiencing less
pain than he or she experienced prior to treatment: mean
pain at baseline � 7.78; mean pain at follow-up � 2.21;
r(23) � �.96, p � .0002. All of these analyses document
a phase effect on a single variable (in this case, pain). A
similar analysis could be applied to the daily distress mea-
sure and the mood measure. In any event, the patient is
reporting less pain. Of course, whether pain receded be-
cause of the treatment itself or because of some other
historical process is a matter to be addressed by subsequent
group or time-series studies.

Real Cases
Below we briefly present two time-series case studies con-
ducted in an outpatient psychotherapy setting. The first
follows the university-based PRIP but was conducted in an
Employee Assistance Program (EAP). Because it is primar-
ily an improvement study, SMA was used to test for an
effect of phase, controlling for autocorrelation. The second
case is a time-series study conducted in a private practice
setting. Its focus is a multivariate process-change relation-
ship between two symptom variables, testing whether the
pattern of changes on these variables conforms to what
theories of therapeutic mechanism would predict. Both
cases do double duty as real-world examples of the special
(but not formidable) inferential and logistical challenges
posed by time-series research in clinical practice.

Table 1
Calculating Lag 1 Autocorrelation of the 35
Treatment-Phase Pain Ratings in Figure 1: How Well
Does Pain at Time K (Column A) Predict Pain at Time
K 1 (Column B)?

(Column A)

Predicts

(Column B) (Column C)

Treatment-phase
pain rating from
Figure 1 at Time K

Pain rating at
Time K 1

Pairs to be
correlated:

Time K, Time
K 1

6 (Time 1) 6 (Time 1) —
7 (Time 2) 7 (Time 2) 6,7
6 (Time 3) 6 (Time 3) 7,6
8 (Time 4) 8 (Time 4) 6,8
6 (Time 5) 6 (Time 5) 8,6
7 (Time 6) 7 (Time 6) 6,7
4 (Time 7) 4 (Time 7) 7,4
6 (Time 8) 6 (Time 8) 4,6
5 (Time 9) 5 (Time 9) 6,5
6 (Time 10) 6 (Time 10) 5,6
5 (Time 11) 5 (Time 11) 6,5
4 (Time 12) 4 (Time 12) 5,4
3 (Time 13) 3 (Time 13) 4,3
2 (Time 14) 2 (Time 14) 3,2
4 (Time 15) 4 (Time 15) 2,4
3 (Time 16) 3 (Time 16) 4,3
1 (Time 17) 1 (Time 17) 3,1
2 (Time 18) 2 (Time 18) 1,2
1 (Time 19) 1 (Time 19) 2,1
2 (Time 20) 2 (Time 20) 1,2
3 (Time 21) 3 (Time 21) 2,3
2 (Time 22) 2 (Time 22) 3,2
3 (Time 23) 3 (Time 23) 2,3
2 (Time 24) 2 (Time 24) 3,2
1 (Time 25) 1 (Time 25) 2,1
2 (Time 26) 2 (Time 26) 1,2
2 (Time 27) 2 (Time 27) 2,2
1 (Time 28) 1 (Time 28) 2,1
2 (Time 29) 2 (Time 29) 1,2
1 (Time 30) 1 (Time 30) 2,1
2 (Time 31) 2 (Time 31) 1,2
2 (Time 32) 2 (Time 32) 2,2
1 (Time 33) 1 (Time 33) 2,1
1 (Time 34) 1 (Time 34) 1,1
2 (Time 35) 2 (Time 35) 1,2

Note. The Lag 1 autocorrelation r (Time K Time K 1 in column C) .81.
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Case 1—An Improvement Study in an EAP
Setting: Looking for an Effect of Phase
Reviews of the efficacy of psychosocial interventions for
hypertension suggest weak to modest effects for cognitive–
behavioral treatments (Eisenberg et al., 1993), relaxation
therapies (Jacob, Chesney, Williams, Ding, & Shapiro,
1991; McGrady, 1996), education/training (Boulware et
al., 2001), and stress management interventions (see Ebra-
him & Smith, 1998). In this case, the patient’s diligence
inspired the therapist to test whether a psychotherapeutic
intervention for hypertension would impact the patient’s
hypertension above and beyond the effects of pharmaco-
logical management.

A 42-year-old married, White, female, licensed
practical nurse presented with a 10-month history of
essential hypertension predominantly at work. During
that time, the patient had meticulously kept a record of
her self-monitored blood pressure taken daily in the
work setting (hospital). She was consistent regarding
recording times, equipment, and posture. Figure 2 illus-
trates that the pharmacological protocol applied during
the nine months immediately prior to psychological in-
tervention reduced the systolic blood pressure (SBP)
from approximately 210 mmHg to a little less than 150
mmHg. However, during the same nine-month period,
the patient’s diastolic blood pressure (DBP) decreased
very little, from approximately 120 mmHg to the still
unacceptable range from 108 to 112 mmHg. The patient
was referred for psychological intervention in hopes of
augmenting the effect of medications.

The therapist (J.B.) instructed the patient to continue
monitoring her blood pressure in the work setting. The

ensuing 12-week therapeutic intervention was described by
the therapist as incorporating insight-oriented and cogni-
tive–behavioral approaches (for details, see Borckardt,
2001). The time-series design (depicted in Figure 2)
tracked SBP and DBP across baseline, medication-alone,
and medication-plus-psychotherapy phases, with sufficient
precision to conduct a fair test of (a) whether the patient
improved during psychological intervention, (b) whether
the effect was statistically significant, and (c) whether the
effect, if any, was on SBP, DBP, or both.

Analyses of the data in Figure 2 show that the
reduction in SBP from the baseline condition to the
medication-alone condition was statistically significant
(Phase A, M � 207.75; Phase B, M � 157.84; r � �.89,
p � .001); however, the effect on SBP of adding psy-
chotherapy to the medication was not (Phase B, M �
157.84; Phase C, M � 143.08, r � �.66, p � .20). For
DBP, the impact of medication was also statistically
significant (Phase A, M � 117.25; Phase B, M � 110.87,
r � �.80, p � .001); however, adding psychotherapy to
medication enabled the patient to lower her DBP beyond
that achieved by medication alone (Phase B, M �
110.87; Phase C, M � 96.62, r � �.79, p � .03). For
this patient, the psychotherapy intervention was associ-
ated with a reduction of DBP (but not SBP) beyond that
achieved with a variety of medications. Taken alone,
these practice-based findings are not definitive. How-
ever, studies like these (carried out in a practice or a
laboratory setting) might alert researchers to a promising
intervention in this otherwise grim literature and might
further inform them of what aspects of hypertension are
most responsive to psychosocial intervention.

Figure 2
Case 1—Opportunistic Benefit Study: Mean Weekly Blood Pressure (BP) Readings (Taken at Work) Across
Baseline, Medication-Only, and Medication-Plus-Psychotherapy Phases
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Case 2—Private-Practice Setting: Looking for
Patterns of Change During Treatment
In this example, the practitioner also found a significant
phase effect, but we focus here on how to look beyond
improvement to the process of change as it unfolds. Spe-
cifically, the practitioner asked: During a successful 31-
session therapy with a depressed patient, does an increase
in the extent of social engagement precede improvement of
mood, or does improvement of mood precede an increase
in social engagement? The answer hinges on a cross-lagged
correlational analysis of data within the treatment phase.

A 42-year-old male patient presented in a private-
practice setting with mixed anxiety and depressive symp-
toms. This symptom configuration had a 20-year history
and had on one occasion required the patient’s hospitaliza-
tion. Although neither socially phobic nor agoraphobic, he
generally avoided social gatherings. He secured employ-
ment enabling him to work from home or the office, as he
chose. The patient’s warm and intimate marital relationship
was a notably bright spot in his life. Still, he struggled with
substantial depression and could be alarmingly withdrawn
socially. He had been prescribed several different antide-
pressants with only modest success. A life-long pattern of
mood disorder and anxiety was clear. During initial intake,
the therapist (M.N.) asked the patient to begin to record
daily (a) the number of hours outside the house (social
engagement) and (b) mood on a scale from 1 (not de-
pressed) to 9 (severely depressed). These variables were
chosen in collaboration with the patient as reasonably good
indicators of “getting better.” Each week, just prior to the
psychotherapy session, the patient sent his rating sheet
electronically to the therapist’s office with date and num-
bers only (see Figure 3).

Improvement
The therapy was 31 sessions in duration. As Figure 3
illustrates, modest therapeutic gains were realized during
therapy for daily mood and engagement ratings (the mean
of the daily depression ratings for the first three weeks of
therapy was 7.62, and for the last three weeks it was 2.67;
the mean number of hours spent outside of the home each
day during the first three weeks of therapy was 2.52, and
during the last three weeks it was 5.24).

Process Change: The Cross-Lagged
Correlation
Was the increase in social engagement followed by im-
provement in mood, or was the improvement in mood
followed by greater social engagement? Perhaps there was
no discernible pattern. Simultaneously graphing engage-
ment and mood across sessions seems a promising ap-
proach to this problem. However, visual examination of the
result (see Figure 3, which shows daily ratings of engage-
ment and mood summed and averaged to weeks) is not
immediately encouraging. The slopes of both mood and
engagement track improvement, but is there any statisti-
cally discernible pattern such that change in one symptom
leads or lags change in the other? And if so, by how many
sessions does one lead or lag the other?

The cross-lagged correlation function is more reveal-
ing. The statistical details are described in the Appendix.
Figure 4 summarizes the analysis. The horizontal axis
represents the influence of one variable on the other ex-
pressed in lags. Lag 0 is the direct correlation of engage-
ment at Time K with mood at Time K on a week-by-week
basis (i.e., Time 1 engagement with Time 1 mood; Time 2
engagement with Time 2 mood, etc.). A lag of �5 is the
correlation of engagement at Time K with mood five weeks
earlier (Time K � 5). A lag of � 5 is the correlation of the
mood score with the engagement score five weeks hence.
As Figure 4 illustrates, the largest cross-correlation is at
the � 1 lag, where mood precedes engagement by one
week. The correlation coefficient is �.82 (p � .00001),
significant with or without a Bonferroni correction for 11
comparisons (and when accounting for the influence of
autocorrelation). Hence for this patient, about one week
after his mood changed, his social behavior followed suit.
This is an interesting, and to some degree unexpected,
finding given current thinking that behavioral activation
leads to improvement of mood among depressed patients
(Hopko, Lejuez, Ruggiero, & Eiffert, 2003).

The evidence in this case is that mood leads activity
level. Though alone one case is never definitive, it provides
evidence that might move a laboratory researcher to revisit
assumptions about the temporal sequence of behavioral
activation and mood improvement in future designs. To the
degree that this pattern is replicated, the need for revisiting
theory becomes more urgent.

A Cautionary Note on Time and Cause
When we continuously track key symptoms and therapeutic
parameters through the treatment phase, cross-lagged cor-
relations of these data can reveal a great deal about how, to
what degree, and in what order these processes are associ-
ated in time. This has implications for causal inference, but
one must proceed carefully.

For instance, though statistically significant and siz-
able, the cross-lagged correlation finding in Case 2
(“change in mood” precedes “change in activity level”)
does not show that change in mood causes change in
activity level. This would be an example of the post hoc
fallacy (post hoc ergo propter hoc: after this, therefore
because of this). Rather, if this finding were to be replicated
in other studies, it would signal that the predominant be-
havioral activation model might need to be modified in
some way. To understand why, one must first appreciate
the relationship of time to cause. Here we are specifically
addressing Aristotle’s notion of efficient cause (i.e., trig-
gering events) and not his notions of material, formal, or
final causes (see Killeen, 2001; Killeen & Nash, 2003).
Though it is a necessary condition to infer cause, merely
showing that Event A preceded Event B does not prove that
Event A caused Event B. For example, a hurricane (Event
A) might precede the roof falling in (Event B), but that
does not prove that the hurricane caused the roof to fall in
(though it is suggestive). It is important to note that it is still
true that an event cannot be caused by something that
occurred after it happened: If the roof fell in (Event B)
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before the hurricane occurred (Event A), this would be
inconsistent with the notion that the hurricane caused the
roof to fall in. Hence, if a number of studies find that
changes in mood precede changes in activity, this consti-
tutes evidence that contradicts an uncomplicated linear
causal model with behavioral activation driving mood
change. Presumably, other models might then emerge ac-
counting for this evidence. Our point here is that analysis of
time-series data is singularly well suited to test whether the
sequencing of the change process across time squares with

theory. Conventional pre–post-follow-up group designs,
though irreplaceable, do not allow one to test theory in this
way.

Logistics: The Fundamentals
Creating a Data Stream

Tracking change over time is the most fundamental feature
of single-case time-series outcome design. A patient is
measured repeatedly on a number of outcome-related vari-

Figure 3
Case 2—Pattern of Change: Sum of Mood Ratings and Hours Spent Outside of the House During a 31-Week
Treatment
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ables across baseline, treatment, and follow-up phases. The
outcome measures chosen are of course determined by the
nature of the clinical problem, the opportunity for measure-
ment, and the soundness of the measures themselves. At the
onset, the clinical researcher must make critical decisions
about the data stream.

Source and Content of the Observations
The source of the observations can be the patient, his or her
significant others, and/or the therapist. The content of the
measures might be symptoms (e.g., mood, anxiety, pain),
social behaviors, physical status (weight, blood pressure),
or medication usage. The case study is enriched when
observations are secured across more than one source and
more than one symptom cluster (Strupp, 1996). For in-
stance, with a case involving treatment for pain, the patient
might report level of pain on a daily basis and amount of
prn (pro re nata, or as-needed) medication; the spouse
might report the patient’s level of activity and frequency of
pain-related complaints.

Sample Evenly and Frequently
If change in the outcome variables is to be properly gauged,
observations must be repeated evenly across time (e.g.,
daily, weekly). That is, the interval between measurements
must be the same throughout the entire study; otherwise,
statistical artifacts can occur. Whether the clinical focus is
heart rate, blood pressure, hair pulling, itching, prn medi-
cation use, or self-mutilation, repeated observations sam-
pled consistently over time and phase establish the topog-
raphy of change. The number of observations for each

phase can be different, but statistical analysis of intra-
subject variability requires the interval of observation (e.g.,
daily, weekly) to be the same for all phases in the study.
We have found daily measurement to be well tolerated by
patients and well suited to the statistical requirements of the
time-series analysis.

Because the clinical researcher is interested in know-
ing how these symptom data streams map against phases
(e.g., baseline, treatment, follow-up), the total number of
observations in the entire data stream and the number of
observations in each phase are important. Statistically, the
usual time-series study has about 10–20 total data points
(Center, Skiba, & Casey, 1985–1986; R. R. Jones et al.,
1977; Sharpley, 1987). SMA for time-series requires a
minimum of 10–16 total observations in the data stream
(i.e., 5–8 per phase).

Baseline Observations
In outpatient research, the number of baseline observations
is at a premium. Understandably, patients object to delays
in treatment. Statistically speaking, reasonable sensitivity
and selectivity can be achieved with as few as 7–10 base-
line observations. This is not difficult to realize. For in-
stance, the PRIP intake clinician records a number of
potential dependent variables in light of the presenting
problem and proposed treatment plan. At the end of the
intake interview, the patient is told that within a few days
he or she will receive (a) a packet of customized daily
rating sheets to track symptom status and (b) a telephone
call from the assigned therapist to schedule a second ap-
pointment. Within two days after intake, three to four
dependent variables are selected by the therapist, and cus-
tomized response sheets are mailed to the patient.

The rating sheet (typically covering two to six days) is
handed in by the patient upon arriving for the second
appointment. During this meeting, the therapist and patient
review the results of previous testing, elaborate on the
nature and scope of the clinical problem, complete any
further psychological testing if indicated, define the treat-
ment plan, and schedule the first treatment session. Hence,
when the patient returns for the next session (i.e., the first
treatment session) he or she has completed seven daily
ratings in addition to the two to six previously completed.
In this manner, 9–13 baseline observations are realized
before treatment begins. This process can be further
streamlined in real time during the intake interview itself
using software that enables the intake clinician to custom-
ize and print initial rating sheets for the patient to take
home immediately after the intake session.

It must be remembered, however, that statistical
power and internal validity are not the same thing. Al-
though extended baselines are not strictly necessary to
construct a statistical model of the data stream, stable
baselines with many observations over a long period of
time are conceptually preferable. When we have the luxury
of long baselines, we feel more secure about attributing to
the intervention clinical improvement observed after the
onset of treatment. Still, the reality is that generating long
baselines in a clinical setting is often not possible. For this

Figure 4
Case 2—Pattern of Change: Cross-Correlation
Functioning Showing Directional and Temporal
Relationship of Change in Mood With Change in
Social Engagement During Therapy
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reason, a carefully conducted and well-documented history
is an especially important feature of a time-series protocol.
For instance, a patient reporting that she has not had sex
with her husband since Christmas of the preceding year
would inform a practitioner of the scope of the problem.

Supplementing With a Standardized
Outcome Measure
Administration of a standardized outcome measure (e.g.,
the OQ-45, the Beck Depression Inventory, the Symptom
Checklist–90) once at intake and periodically throughout
treatment can enrich the time-series data (for a comprehen-
sive review of outcome assessment measures, see Maruish,
2004). For example, the PRIP protocol requires adminis-
tration of the OQ-45 (Lambert, Gregersen, & Burlingame,
2004) at intake and monthly thereafter. We chose the
OQ-45 precisely because it provides cutoffs for reliable and
clinically significant change (see Jacobson & Truax, 1991).
Though statistical modeling of these data at the individual
patient level is not viable given the small number of data
points, if the trend of OQ-45 scores across time tracks
reasonably well against the improvement indexed by daily
observations, and meets the cutoff criteria for reliable and
clinically significant change, an argument for benefit is
enhanced. Supplemental assessment on a standardized
measure also provides a common metric, allowing the
clinical researcher to compare the extent and relevance of
the patient’s therapeutic gains with those of patients in
other studies.

Maintaining the Data Stream
Patients return the single-page weekly rating sheets when
they arrive for the therapy hour. This can be handled by a
receptionist if one is available. For the PRIP project, the
patient folds the weekly sheet and deposits it in a large
locked box in the clinic waiting area that is clearly labeled
“Response Sheets.” The sheets themselves have no name—
only a code number. This quickly becomes part of the
routine of checking in. The receptionist keeps a record of
whether the sheet is deposited. If a patient neglects to hand
in a rating sheet, the therapist manages this as he or she
would any other treatment-adherence issue. The timing of
standardized measures (in the case of the PRIP, monthly
administration of the OQ-45) is determined by a simple
session count. For instance, every four weeks, PRIP pa-
tients are asked by the receptionist to complete the OQ-45
measure when they arrive for their therapy session. During
the termination phase of therapy, patients are told that six
months hence they will be contacted by mail for follow-up.
In addition to the OQ-45, the follow-up packet includes
rating sheets for 14 days.

The clinician (rather than the reception staff) could
collect the daily rating sheets at the beginning of each
session, and the data might even be integrated in some
meaningful way with the therapy itself. However, in the
case of the PRIP project, it was decided that it made sense
from both training and clinical service perspectives to keep
many of the logistics of the research agenda separate from
the actual therapy. In real-world clinical settings, the indi-

vidual clinician conducting the study should make deci-
sions regarding data handling in consideration of potential
clinical and logistical implications.

Ethical Considerations

Tracking the patient’s symptom status, even if only in part,
for the purpose of advancing science immediately requires
attention to professional ethics beyond those routinely en-
countered in service delivery. These ethical matters involve
informed consent, confidentiality, and the degree to which
the research agenda compromises (or enhances) responsi-
ble service delivery. Some make a strong argument that
ethical delivery of a treatment de facto requires attention to
how the patient is responding (Association for Advance-
ment of Behavior Therapy, 1977; Cone & Dalenberg, 2004;
Hayes, 1981; Levy & Olson, 1979), thus justifying frequent
assessment on service delivery considerations alone. Still,
we assume that concessions to the research agenda are
inevitable and must be addressed with the patient from the
outset (Barrios, 1993; Bloom, Fischer, & Orme, 2003). We
do this face to face during initial intake, addressing the
issues as described below.

In our case studies, all assessment data are part of the
patient’s clinical chart. Hence the patient can expect con-
fidentiality and accessibility as per professional ethical
codes and HIPAA (Health Insurance Portability and Ac-
countability Act of 1996) standards. At intake, the patient
is informed of this in writing and is informed that, beyond
good practice, one reason for our meticulous assessments is
research: The patient’s de-identified data might be included
(possibly along with those of other patients) to help us learn
more about how psychotherapy works. For the PRIP
project, patients are told that normally the therapist does
not see the data until therapy is finished. There is some
flexibility in this, but whatever the arrangement is regard-
ing the therapist’s seeing the data, it is handled up front
with the patient during the intake session. The patient is
told that the treatment might be described in more detail in
a scientific publication with his or her identity disguised.
However, this would not occur unless or until the patient
reads the report and gives consent (in writing) for us to
share it with others. All of this is incorporated into our
intake procedure, and patients can receive treatment with-
out participating. We exclude patients presenting with
emergent problems that might contraindicate even the min-
imal delays possible in our design (Kazdin, 1992).

Analysis of Time-Series Data
Data Fluctuation in Group Designs

Informally put, the generic outcome question for an RCT
study asks, How viable is the notion that mere random
sampling fluctuation (e.g., error variance) accounts for
whatever benefit is observed in the treatment group relative
to that of the control group? Scientific psychology has at its
disposal a formidable array of parametric and nonparamet-
ric statistics specifically designed to detect nonrandom
shifts in population parameters.
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Data Fluctuation in Time-Series Studies
In a case-based time-series study, dispatching the “sam-
pling fluctuation” explanation is more complex. This is
because there is another source of variability peculiar to
time-series designs: It is autocorrelation, or serial depen-
dence. These are fluctuations that are due to monotonic
trends, periodicity, or behavioral drifts in the data stream
occurring across time (Suen, 1987). This lawful fluctuation
is encountered in most other areas of natural science:
meteorological shifts, economic recoveries, soil erosion,
menses, and population genetics. As noted above, the pres-
ence of autocorrelation violates the fundamental assump-
tion of conventional parametric and nonparametric statis-
tics: independence of observations.

Autocorrelation as Nuisance and
Raison d’Être
Observations are independent when each and every datum
is its own unique source of information, unrelated to pre-
ceding or subsequent observations. In group research, this
assumption is relatively secure. In time-series studies,
where the patient’s mood on Day 1 might very well par-
tially determine mood on Day 2; and mood on Day 2
similarly becomes the point of departure for mood on Day
3, the data points are in a sense predicting each other. In
other words there are not really as many observations as
there seem to be because the observations are not indepen-
dent of one another. For this reason, when conventional
inferential group statistics (e.g., t, F, chi-square, and sign
tests) are mistakenly applied to autocorrelated data streams,
variability is underestimated; hence the effect/variability
ratio is artifactually inflated. Spuriously high ts, Fs, and rs,
are generated, and researchers too often infer an effect
when it is not justified (Hibbs, 1974; Sharpley & Alavosius,
1988).

The Nuisance
In practice, the incidence of autocorrelation in behavioral
time-series data is generally viewed as sufficient to cause
serious inferential bias if conventional statistics are used
(Busk & Marascuilo, 1988; R. R. Jones et al., 1978; Matyas
& Greenwood, 1990; Suen, 1987, but see Huitema, 1985,
and Huitema & McKean, 1998; for reviews, see Franklin,
Allison, & Gorman, 1996, and Robey et al., 1999). Further,
it does not matter whether the autocorrelation coefficient is
statistically significant. What matters is “the degree of
distortion visited upon the t and F statistics when the
autocorrelated data are analyzed via those procedures”
(Sharpley & Alavosius, 1988, p. 246). For instance,
whether it is significant or not, a calculated autocorrelation
of .10 can inflate t and F values 110%–200% when the
autocorrelation is .6. Note that the Lag 1 autocorrelations
for the three cases presented in this article are as follows:
Case 1—pain, r � .81; Case 2—SBP, r � .87, DBP, r �
.91; Case 3—mood, r � .42, hours outside home, r � .33.
At these levels of autocorrelation, Type I error rates can be
significantly inflated. For this reason, time-series designs
require special statistical treatment that adjusts for this
problem.

As noted earlier, visual inspection of autocorrelated
data streams, even by seasoned experts, yields low reliability
and unacceptable Type I error rates. The same is true for
nonparametric and modified parametric statistics (for reviews,
see Franklin, Allison, & Gorman, 1996, and Robey et al.,
1999). Multivariate software programs such as Autoregressive
Integrated Moving Average Models (ARIMA), Hierarchical
Linear Modeling (HLM), Interrupted Time-Series Analysis
Correlational Analysis (ITSACORR), and autoregression es-
sentially allow one to “model away” the autocorrelation and
then test for significance (see also Gottman & Ringland, 1981;
Price & Jones, 1998). These are powerful tools, but they
require more observations per phase (at least 30–50) than are
typically available in clinical work; and they statistically par-
tial out serial dependence as though it were error.

The Promise
Though it is a statistical nuisance, by its very nature serial
dependence reflects the momentum and gradualism of
physiological, behavioral, and emotional repair. Because it
is an index of serial dependence, the autocorrelation coef-
ficient can reveal something about trends or fluctuations in
symptoms before treatment and how these fluctuations shift
during treatment. In a sense, autocorrelation is the natural
subject matter of a clinical science. Whatever inferential
statistic is applied to case-based time-series data streams,
we believe it should approach autocorrelation not as noise
that obscures change, but as music that attends it. Put
differently, the preferred statistic gauges the occurrence of
change while preserving its structure.

Simulation Modeling Analysis for
Time-Series: Step by Step
SMA is a variant of bootstrapping methodologies that have
been used to determine empirical significance levels across
many kinds of data sets (see Wilcox, 2001). These ap-
proaches generally resample from known distributions to
determine exact probabilities instead of probability esti-
mates. For readers who are interested in a more detailed
statistical treatment of SMA, please refer to the Appendix.

Below we walk the reader through SMA for time-
series using a section of the DBP data from Case 1 (see
Figure 2). For purposes of illustration we test whether there
is a statistically significant effect on DBP for psychother-
apy plus medication (Weeks 36–48) compared with med-
ication alone (after the effects of the medication interven-
tions appear to have stabilized; Weeks 21–35). There are
three steps to this analysis, each enabled by the SMA
computer software: (a) creation of the data stream array, (b)
determination of effect size and autocorrelation, and (c)
simulation modeling with generation of significance criteria.

Step 1: Data stream array. Table 2 illustrates
the structure and logic of the data array. In the first column
are the weeks, beginning with Week 21 (stabilized medi-
cation-only effect), through Week 35 (just before psycho-
therapy was added), and from Week 36 to Week 48 (during
the medication-plus-psychotherapy phase). Column 2
records the mean DBP for the given week. The third
column indicates whether the weekly mean DBP is during
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the baseline pharmacology-alone phase (coded 0) or during
the pharmacology-plus-psychotherapy phase (coded 1).
There are 15 observations in the baseline phase and 13 in
the psychotherapy treatment phase.

Step 2: Determination of effect size and
parameters for simulation modeling. To
gauge the effect size for psychotherapy, the computer cal-
culates the Pearson correlation between DBP and the phase
dummy coding. The effect size in our example is �.79. In
other words, DBP during the psychotherapy treatment
phase is considerably lower than during the baseline med-
ication phase. But we know that autocorrelation can create
large effect sizes (i.e., high correlations between phase and
DBP in our case) that might look significant but are not. To
correct for this, we must know the extent of autocorrelation
(AR) in the DBP measures over time. This is calculated by
the SMA software via the formula shown in Step 2 of the

Appendix. In our example, the autocorrelation, r(Lag 1),
for the baseline phase of our observed data stream is .17,
and the autocorrelation for the medication-plus-psycho-
therapy phase is .85. Hence, whatever correction there must
be, it will be considerable.

Step 3: Simulation modeling with genera-
tion of significance criteria. SMA utilizes four pa-
rameters of the observed data stream—the autocorrelation
estimate from the baseline phase, or Phase A (ARa); the
autocorrelation from the treatment phase, or Phase B
(ARb); the number of observations in Phase A (Na); and the
number of observations in Phase B (Nb)—to generate thou-
sands of simulated data streams drawn randomly from a
known null distribution of data streams (random normal
with no programmed effects) all of which have the same
autocorrelation and number of observations as the original
observed data stream. When these thousands of data sets
are evaluated, the user can determine how likely different
effect sizes are given the specified levels of autocorrelation
and N (when no effects are actually present). Note that this
is virtually the same approach as Monte Carlo analysis but
with specific values for the parameters of interest (phase N
and autocorrelation values). In our example, all 10,000
simulated data streams have 15 baseline observations, 13
treatment observations, a baseline ARa of .17, and a treat-
ment-phase ARb of .85. Remember that they are drawn
from a null distribution of data streams that has no pro-
grammed effect (i.e., the mean effect size in this distribu-
tion is 0). Of course, there will be variability around zero,
and this is what interests us. For each of these simulated
data streams, the Pearson r value (i.e., treatment effect size)
is calculated in the same fashion as it was for the observed
patient data stream. A table is generated, as in Table 3, that
gives the probability that a given effect size (an r of �.79
in our example) will occur by chance in a null distribution
of data streams with ARa � .17, ARb � .85, Na � 15, and
Nb � 13. If we scroll down Table 3 to our observed
treatment effect in our observed data stream (r � �.79), we
find that the probability of obtaining an effect size of �.79
(or larger) in a distribution of data streams which is in fact
null is .03. This probability then provides an empirical
estimate of the probability of such an observed value oc-
curring by chance.

As illustrated in Table A1 in the Appendix, SMA
provides clinical researchers with an attractive method for
evaluating the statistical significance of between-phase
changes in data streams typical of most case-based clinical
research: a total number of observations less than 30, an
autocorrelation between .2 and .8, and moderate to large
effect sizes (Center et al., 1985–1986; R. R. Jones et al.,
1977; Sharpley, 1987). Note that when more data are
available (30� data points per phase), more conventional
time-series analytic techniques are preferred (e.g., ARIMA,
HLM, autoregression). However, with short data streams
(between 5 and 15 data points per phase), SMA delivers
substantially more power than conventional statistics (in-
cluding several time-series-specific analytic approaches
such as ITSACORR, Crosbie, 1993; see Table A1 in the
Appendix), and its selectivity is acceptable. A free, user-

Table 2
Structure and Logic of the Time-Series Data Array
Using an Example of Weekly Diastolic Blood Pressure
Before and After Onset of a Multimodal
Psychotherapy (From Case 1 in Figure 2)

Week
Diastolic blood

pressure (mmHg)

Phase vector
dummy coding
(0 � baseline,
1 � treatment) Phase

21 111 0
22 113 0
23 112 0
24 112 0
25 111 0
26 110 0
27 110 0 Baseline phase

A, n � 1528 110 0
29 110 0
30 112 0
31 110 0
32 110 0
33 110 0
34 109 0 Onset of

treatment35 113 0
36 110 1
37 108 1
38 106 1
39 103 1
40 100 1 Treatment

Phase B,
n � 13

41 98 1
42 96 1
43 94 1
44 90 1
45 88 1
46 89 1
47 88 1
48 86 1

Note. Phase A autocorrelation estimate � .17; Phase B autocorrelation esti-
mate � .85; correlation of dependent variable and phase vector � �.79.
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friendly stand-alone computer program has been developed
to run SMA for Windows and Macintosh platforms. It can
be downloaded at http://clinicalresearcher.org.

Conclusions
Case-based time-series designs will not dissolve the formi-
dable epistemological gap between practice and research,
but their use can help bring the two disciplines within
shouting distance of each other on a more regular basis. As
with many things in life, enhanced communication pivots
on compromise by both parties. For their part, practitioners
must concede that replicable systematic observation is a

necessary requirement of evidence; in turn, researchers
must concede (indeed rediscover) that carefully conducted
ideographic studies can yield empirically sound findings
about therapeutic change. In some cases, the evidence can
be obtained in no other way.

For some, these concessions will not be forthcoming.
Still, a robust clinical science requires an ongoing produc-
tive discourse between a critical mass of researchers and
practitioners. Herein lies the twofold promise of case-based
time-series designs. First, their careful use enables practi-
tioners to make contributions that are fully congruent with
the evidence-driven ethos of scientific discourse. By rising

Table 3
Empirical Probability Table Generated via the Simulation Modeling Approach That Provides the User With the
Probability of Discovering Various Effects (Correlations Between the Dependent Measure of Interest and the
Baseline/Treatment Vector) Among Random Data With Properties (N and Autocorrelation) Similar to Those of
the Data in Question

Absolute value of
Pearson r (�r�)

Probability (p) of attaining
�r � given N and
autocorrelation

Absolute value of
Pearson r (�r�)

Probability (p) of attaining
�r � given N and
autocorrelation

Absolute value of
Pearson r (�r�)

Probability (p) of attaining
�r � given N and
autocorrelation

.00 1.000

.01 .987

.02 .977

.03 .963

.04 .947

.05 .935

.06 .924

.07 .910

.08 .897

.09 .885

.10 .874

.11 .858

.12 .846

.13 .832

.14 .819

.15 .802

.16 .786

.17 .773

.18 .762

.19 .747

.20 .734

.21 .720

.22 .706

.23 .694

.24 .681

.25 .667

.26 .652

.27 .639

.28 .625

.29 .611

.30 .598

.31 .582

.32 .570

.33 .555

Note. Data properties: Phase A N � 15; Phase B N � 13; Phase A autocorrelation � .17; Phase B autocorrelation � .85. Correlation between actual and phase
vector: r � �.79, p � .030.

.34 .538

.35 .524

.36 .512

.37 .502

.38 .492

.39 .478

.40 .462

.41 .447

.42 .433

.43 .419

.44 .406

.45 .393

.46 .379

.47 .367

.48 .350

.49 .338

.50 .326

.51 .314

.52 .303

.53 .293

.54 .279

.55 .267

.56 .255

.57 .243

.58 .228

.59 .217

.60 .205

.61 .196

.62 .186

.63 .174

.64 .160

.65 .148

.66 .138

.67 .128

.68 .117

.69 .106

.70 .097

.71 .089

.72 .081

.73 .073

.74 .064

.75 .056

.76 .047

.77 .041

.78 .035

.79 .030

.80 .036

.81 .022

.82 .017

.83 .014

.84 .011

.85 .009

.86 .006

.87 .005

.88 .003

.89 .001

.90 .001

.91 .000

.92 .000

.93 .000

.94 .000

.95 .000

.96 .000

.97 .000

.98 .000

.99 .000
1.00 .000
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above mere clinical anecdote, practitioners earn a more
prominent and respected voice on matters of theory, re-
search, policy, and training. The clinical setting can indeed
become the natural laboratory envisioned by Westen and
Bradley (2005) and Peterson (2004). Second, time-series
designs yield findings especially pertinent to how therapeu-
tic change unfolds, not in the aggregate, but individually.
Though almost entirely neglected by contemporary inves-
tigators, single-subject research of this kind has a luminous
and storied lineage in experimental and clinical psychol-
ogy. By harnessing time-series designs alongside group
experimental methodologies, psychologists will accelerate
the progress we are making in understanding the structure
and mechanism of therapeutic change.
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Appendix
Simulation Modeling Analysis for Brief Time-Series Data Streams

Numerous statistical approaches have been proposed
to handle short streams of time-series data, but they fall
short of providing users with reasonable power and good
Type I error control in the face of autocorrelation (for a
review, see Robey et al., 1999). One of these is ITSACORR
(interrupted time-series analysis procedure), which attempts to
analyze short time-series data streams (Crosbie, 1993) but is
somewhat overly stringent with respect to Type I error control
and has unacceptable power with shorter data streams. Table
A1 compares Type I error rates and power across data streams
of varying lengths and autocorrelation for simulation model-
ing analysis (SMA) and ITSACORR.

Simulation Modeling Explained With
an Example
The following example demonstrates an application of the
simulation modeling approach. The hypothetical dependent
variable (DV) is anxiety ratings from a single patient over
time:

13.1, 15.4, 11.0, 18.0, 21.0, 18.7, 13.1, 13.2, 8.0, 9.0, 3.0, 7.0, 11.0, 9.0

The independent variable (IV; phase vector) repre-
sents the baseline (0) and the onset of the intervention (1):

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1

Step 1

Calculate the correlation (Pearson r is used for this exam-
ple) between the DV and the phase vector: roriginal � �.75.

Step 2

Calculate the autocorrelation (AR; Lag 1 for this example)
estimate of the DV: AR � .69.

AR �

1

�n � k� �
i�1

n�1

�xi � x���xi�1 � x��

1

n �
i�1

n

�xi � x��2

.

where n � number of data points � 14, and k � lag �1.

Step 3

Generate a null autocorrelated distribution one data stream
at a time and compare the correlation between each null
autocorrelated data stream and the phase vector (rs; where
s � 1 to the number of simulation data streams to be
generated—10,000 in this example) with roriginal. Each data
stream (14 data points each for this example) is generated
using the formula below:

yi � � � εi

where εi � �εi�1 � normal random error N(0, 1); � �
programmed autocorrelation � .69; � � programmed in-
tercept change � 0; and i � 1 to 14.

Each resulting data stream is correlated with the orig-
inal phase vector, and the absolute value of this correlation
coefficient (rs) is compared with the absolute value of
roriginal.

An example null autocorrelated data stream generated
with the formula above might look like the following:

0.3312764, 0.2024504, 0.3337031, 0.9529499, �0.6504073, 0.3862382,
0.3212215, 0.3212215, �0.714993, �1.421806, �1.147819,
�0.7311038, 0.9587694, 1.613709.

The correlation between this data stream and the phase
vector is r1 � �.26.

��.26� � ��.75�: so this is counted as a “miss.”

This process is repeated with a new null autocorre-
lated data stream:

1.333145, 1.137773, 0.1980224, 0.3734288, 0.8907856, 0.7776737,
�0.229401, �0.229401, �1.103827, 0.2006088, �1.16338, �1.006609,
�0.7803311, �1.867005.

The correlation between this data stream and the phase
vector is r2 � �.79.

��.79� 	 ��.75�: so this is counted as a “hit.”

Table A1
Empirical Type I Error Rates and Power of Simulation
Modeling Analysis (SMA) for Time-Series and
ITSACORR (Crosbie, 1993)

AR

N � 10 (5, 5) N � 20 (10, 10) N � 30 (15, 15)

ITSACORR SMA ITSACORR SMA ITSACORR SMA

Type I error

0 0.02 0.00 0.01 0.06 0.02 0.06
.2 0.02 0.01 0.01 0.05 0.01 0.07
.4 0.02 0.01 0.01 0.05 0.01 0.06
.6 0.03 0.01 0.01 0.05 0.00 0.06
.8 0.03 0.01 0.02 0.05 0.01 0.05

Power (effect � 5)

0 0.38 0.99 0.66 1.00 0.87 1.00
.2 0.43 0.99 0.65 1.00 0.81 1.00
.4 0.51 0.99 0.77 0.99 0.84 1.00
.6 0.57 0.97 0.93 0.99 0.97 0.99
.8 0.59 0.95 0.99 0.92 1.00 0.90

Note. Both approaches offer good Type I error control in the face of autocorre-
lation (AR) and with very short data streams (although ideal Type I error rates should
be between .025 and .075). However, SMA offers superior power to ITSACORR.
Power estimates are based on the smallest effect size reported by Crosbie (1993),
although SMA offers adequate power (	 .80) with effects as small as 2 to 3 (not
shown). ITSACORR � interrupted time-series analysis procedure.
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Step 4

Step 3 is repeated a total of 10,000 times (r1 to r10,000)
and the empirical p value is equal to “hits”/10,000. After
the full procedure is completed 10,000 times, the result-
ant p value � .12, and we would fail to reject the null
hypothesis.

Cross-Corrrelations
Cross-correlation empirical significance can be assessed in
a similar manner. However, instead of using a phase vector
to correlate with the random autocorrelated data streams,
pairs of random streams are cross-correlated across a series
of lags.

First, the range of lags that the user is interested in is
determined (e.g., �5 to �5), and the correlation coeffi-
cients are calculated using the original data streams at each
of the lags. Next, the simulation model is established with
the same N and autocorrelation estimates. The cross-lagged
correlation coefficients are calculated for the predetermined
range of lags for each of the 10,000 pairs of simulation
streams. Just as above, the cross-correlation for each lag is
compared between the original data streams and each of the
simulation stream pairs to determine the empirical p value.
Last, the critical alpha for the analysis should be adjusted
for multiple comparisons in order to correct for the number
of lags of interest (e.g., �5 to �5 results in 11 lags, so
critical alpha could be divided by 11).
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