
When designing an experiment, researchers almost au-
tomatically conceptualize the design in terms of a group 
approach, which can include between-group or within-
group comparisons. This is not surprising, because only 
this type of study is covered in most statistical and meth-
odological courses. Furthermore, most journal articles and 
statistics handbooks are based on this traditional, large-n 
research methodology (see, e.g., Moore & McCabe, 2006; 
Ramsey & Schafer, 2002).

Although this approach is very useful, group designs 
also have their limitations. In some instances, single-case 
experimental designs can provide a viable alternative or 
supplement to group designs. For example, single-case 
designs may be preferred when generating pilot data in 
the early stages of a larger group study; when the research 
concerns rare types of experimental subjects; when ex-
amining such questions as “does this treatment work for 
this particular individual?”; when testing the generaliz-
ability of an average group effect to individual subjects; 
and, of course, when research funds are scarce, mak-
ing it impossible to obtain enough subjects for a large-
scale group study (Barlow & Hersen, 1984; Edgington 
& Onghena, 2007; Franklin, Allison, & Gorman, 1997; 
Kazdin, 1982).

In the form of n-of-1 clinical trials, single-case designs 
can also help bridge the gap between theory and practice 
(Lundervold & Belwood, 2000). Here, the patient under-
goes different treatments in a randomized order, and thus 
acts as his or her own control (Guyatt et al., 1988; Guyatt 
et al., 1986). In this way, the optimal therapy for a par-
ticular patient can be identified quickly; an unnecessary 
prolonged treatment can be avoided; new information 
about the effects of treatment can be gathered systemati-
cally; and the patient can gain a sense of empowerment 
and control by being part of a study, potentially improving 
adherence to the therapy (Avins, Bent, & Neuhaus, 2005; 

Guyatt et al., 1990; Nikles, Clavarino, & Del Mar, 2005; 
Wegman et al., 2005; Wegman et al., 2003).

But what exactly are these “single-case research de-
signs”? Christensen (2001) defines them as “designs that 
use only one participant or one group of individuals to 
investigate the influence of some experimental treatment 
condition” (p. 279). They should not be confused with case 
studies, which are a form of descriptive research character-
ized by the absence of a designed intervention (Backman 
& Harris, 1999; Kazdin, 1981a). Single-case designs are 
experiments with some kind of deliberate manipulation of 
the independent variable. Since such designs involve only 
one entity, all levels of the independent variable are ad-
ministered to this entity, and repeated measures are taken 
(Onghena, 2005). The underlying rationale of single-case 
designs is thus similar to that of group designs: The effects 
of different levels of an independent variable on a depen-
dent variable are studied (Kazdin, 2003).

A major advantage of experiments is that they allow us 
to infer causal relations, whereas nonexperimental research 
only allows for determining associations between variables 
(Onghena & Edgington, 2005). In a true experiment, how-
ever, not only should there be a deliberate manipulation 
of the independent variable, it should also be possible to 
draw valid inferences about treatment effects. Single-case 
research focuses on what Campbell (1957) called the in-
ternal validity of the study: The aim is to make inferences 
about a treatment’s effect in a specific experiment with a 
specific subject. A researcher removes threats to internal 
validity by eliminating all competing explanations, and for 
this reason the incorporation of some kind of randomiza-
tion is crucial (Todman & Dugard, 2001). In contrast to 
group studies, randomization cannot be accomplished by 
randomly assigning entities to treatments, because single-
case designs include just one entity. However, measure-
ment occasions instead can be randomly assigned to treat-
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weak conclusions, since it is subject to many confounding 
variables (Barlow & Hersen, 1984).

In an ABA withdrawal (or reversal) design, the treat-
ment is administered between two baseline phases (Edg-
ington, 1996). By adding this third phase, the impact of 
the intervention can be determined with greater certainty, 
because it is unlikely that possible confounding factors 
will lose their effect following withdrawal of the inter-
vention (Zhan & Ottenbacher, 2001). However, rejection 
of the null hypothesis in this design could also indicate 
an effect of withdrawal or a combined effect of treatment 
and withdrawal, rather than a treatment effect (Todman & 
Dugard, 2001). Another concern with this design involves 
an ethical issue: In clinical contexts, if the experiment 
ends with a baseline phase, the patient cannot benefit fully 
from the treatment, and in some instances can even be left 
in an undesirable state (Barlow & Hersen, 1984).

The addition of a second treatment phase (ABAB de-
sign) can help to deal with the problems of the withdrawal 
design. Because the experiment ends with—hopefully a 
successful—intervention, the client can profit from the 
benefits of the treatment. Also, because there are two oc-
casions for demonstrating the treatment effect, stronger 
conclusions can be made. With each change in the data pat-
tern, it becomes less likely that extraneous variables are the 
reason for the observed effect (Barlow & Hersen, 1984). 
As an illustration, consider the hypothetical example of an 
ABAB design presented by Onghena (1992). A graphical 
representation of his data set is shown in Figure 1.

When imagining that the data in this example stand for 
some kind of undesirable behavior in a 5-year-old, a mere 
visual inspection of the data pattern can lead to the tentative 
conclusion that the unwanted behavior is less present during 
the treatment phases than during baseline. This is not true for 
all measurement times, however, and there is also a certain 
amount of variation in the scores within each phase.

Of course, phase designs can become far more complex 
than the types given above—for instance, by the addition 
of other treatments (e.g., ABACAB) or by the inclusion of 
an interaction term to allow for investigation of additive 
and nonadditive effects of the different treatments (e.g., 
Barlow & Hersen, 1984; Franklin, Allison, & Gorman, 
1997; Kazdin, 1982).

Alternation designs. When a frequent succession of 
the different conditions is possible, an alternation design 
can be opted for. Such designs can be used to compare the 
effects of different treatments, as well as to compare perfor-
mance in treatment versus no-treatment conditions (Zhan 
& Ottenbacher, 2001). For example, Baplu (2005) used an 
alternation design to compare the effects of a placebo with 
those of methylphenidatum in an adolescent with concen-
tration difficulties. Figure 2 shows the summed scores of 
three items relating to concentration difficulties, each mea-
sured twice a day on a scale from 0 to 3 (where 0 stands for 
no difficulties). Visual inspection of the data patterns for 
both conditions suggests that slightly more concentration 
problems appear in the placebo condition than in the treat-
ment condition. A clear distinction between the two would 
occur, however, if the line of one condition were always 
above that of the other condition.

ments. This removes history and maturation, the major 
threats to the internal validity of a study, by controlling for 
both known and unknown extraneous variables, thus elimi-
nating possible time-related rival hypotheses (Edgington, 
1975, 1996; Onghena & Edgington, 2005).

To improve external validity, systematic replications of 
single-case experiments are needed (Hayes, 1981). Exter-
nal validity is an issue not only in group studies, but also 
in single-case designs, because identifying interventions 
that extend across different conditions (different subjects, 
different settings, etc.) is important. The problems that 
are encountered in group research, such as the selection 
of subjects and the research conditions, are also relevant 
to single-case studies (Kazdin, 1981b). Although they are 
not within the scope of this article, two kinds of single-
case replication studies are noteworthy: simultaneous 
and sequential replication designs (Onghena & Edging-
ton, 2005). In simultaneous replication designs, replica-
tions are carried out at the same time—for example, in 
a multiple-baseline design across subjects, in which 2 or 
more subjects are involved simultaneously. This design can 
strengthen the internal as well as the external validity of a 
study (Ferron & Sentovich, 2002; Hayes, 1981; Koehler & 
Levin, 1998, 2000). In sequential replication designs, the 
replications are carried out one after the other and can be 
analyzed using meta-analytical procedures (see, e.g., Van 
den Noortgate & Onghena, 2003a, 2003b).

Major Types of Single-Case 
Experimental Designs

Two major types of single-case experimental designs 
exist—phase and alternation designs—into which the ran-
dom assignment of measurement occasions to treatments 
can be incorporated. The choice between the two will de-
pend, among other things, on the research questions and 
on practical feasibility.

Phase designs. In phase designs, comparisons are 
made within a time series (Hayes, 1981), and the subject’s 
performance is evaluated over time across baseline (A) 
and intervention (B) phases (Kazdin, 2003). The baseline 
phase serves the same function as a no-treatment control 
group in group studies, with the difference that, in single-
case designs, the comparisons are made within the same 
individual (Lundervold & Belwood, 2000). Phase designs 
can vary as a function of different factors, such as the 
order of the phases, the number of phases, and the number 
of conditions (Kazdin, 1982).

The simplest type of phase design is an AB design, in 
which all baseline measurements precede all treatment 
measurements (Edgington, 1996). The researcher starts by 
measuring the behavior of the subject repeatedly during 
the baseline phase. An intervention is then introduced, and 
the researcher keeps on recording the target behavior dur-
ing the treatment phase. With the gathered information, 
the researcher examines the possible relationship between 
the intervention and the target behavior (Zhan & Otten-
bacher, 2001). If the target behavior changes when the 
treatment is introduced, it becomes plausible that the in-
tervention was responsible for this change (Lundervold & 
Belwood, 2000). However, this design can result in rather 
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Incorporation of Randomization in the Designs
Once the type of single-case design to use has been de-

cided, some kind of randomization needs to be incorpo-
rated into it. The specific randomization schedules differ 
for the two main types of design.

Phase designs. In phase designs, the sequencing of 
phases is fixed, so randomization cannot be applied to the 
treatment order. The moment of phase change, however, 
can be randomly determined without altering the order 
of the treatments (Onghena & Edgington, 2005). For an 
experiment with k phases, k  1 moments of phase change 
have to be selected. In an AB design with six measurement 
times, one intervention moment thus has to be determined 
randomly—the shift from baseline phase to treatment 
phase—resulting in the following possibilities:

AAAAAA	 AABBBB

AAAAAB	 ABBBBB

AAAABB	 BBBBBB

AAABBB

However, when we make no restrictions on the minimum 
number of measurement occasions per phase, we can end 
up with too few or no measurements for one of the phases. 
Therefore, it might be better to specify in advance the total 
number of measurement times and the minimum number 

In alternation designs, comparisons are made between 
time series for the different levels of the independent vari-
able (Hayes, 1981). The basic strategy is the rapid alter-
nation of two or more conditions within a single subject. 
However, rapid alternation does not necessarily mean fre-
quent alternation or using short intermediate time periods; 
it can also mean that the subject/client potentially receives 
an alternative treatment every time he or she is seen by the 
researcher/therapist (Barlow & Hersen, 1984).

This design has some major advantages over phase 
designs: It does not require the withdrawal of treatment, 
which may result in a reversal of therapeutic benefits; there 
is no need for a baseline phase; and, because of the pos-
sibly very short “phases,” comparisons can be made much 
more quickly. It also has some shortcomings, however. 
First, there is a risk of multiple-treatment interference, al-
though random assignment can more or less overcome this 
problem (Barlow & Hayes, 1979; Zhan & Ottenbacher, 
2001). Second, this type of design can only be used when 
a frequent alternation of the treatments is possible. It is 
therefore not useful for research on most types of psycho-
therapy (Onghena & Edgington, 2005).

As with phase designs, more complex alternation de-
signs can also be constructed—for example, by combin-
ing the levels of two or more independent variables, which 
would result in a factorial single-case design (Edgington 
& Onghena, 2007).
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Figure 1. Hypothetical example of an ABAB design (Onghena, 1992).
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possible assignments:

AAABBB	 BBBAAA

AABABB	 BBABAA

AABBAB	 BBAABA

AABBBA	 BBAAAB

ABAABB	 BABBAA

ABABAB	 BABABA

ABABBA	 BABAAB

ABBAAB	 BAABBA

ABBABA	 BAABAB

ABBBAA	 BAAABB

It is not difficult, however, to imagine that some of 
those assignments will be rather undesirable—for exam-
ple, AAABBB. A single-subject analogue of a random-
ized block design can provide a solution. In a conventional 
multisubject randomized block design, the subjects are 
divided into blocks, followed by a random assignment of 
the subjects within each block to the different conditions 
(Edgington, 1996). In the single-case version of the ran-
domized blocks, adjacent treatment times are grouped to-
gether in blocks, and the conditions are assigned randomly 

of observations per phase (Edgington, 1975; Onghena & 
Edgington, 2005). By including a minimum of two mea-
surement occasions for each phase in the previous example, 
we have fewer possibilities, but the assignments make more 
sense: AABBBB, AAABBB, and AAAABB.

Alternation designs. The randomization schemes in al-
ternation designs are easier to picture, because they resem-
ble random assignment in the corresponding large-group 
designs. Instead of randomly assigning subjects to different 
groups, randomization is incorporated into the design by 
randomly assigning measurement times to different condi-
tions (since there is only 1 subject). This actually comes 
down to randomly determining the treatment order.

The simplest randomization schedule in single-case al-
ternation designs is a completely randomized design. The 
random assignment procedure here mirrors the one used 
when randomly assigning subjects to different groups for 
an independent-samples t test (or a one-way ANOVA) in a 
multisubject design (Edgington, 1996). As an example, let 
us consider six measurement occasions, of which three have 
to be assigned to Treatment A and three to Treatment B. The 
random assignment procedure then comes down to randomly 
choosing three measurement times for Treatment A, leaving 
the remaining three times for Treatment B. This equates to
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Figure 2. Alternation design with a treatment condition and a placebo condition to test 
the impact of methylphenidatum on the concentration difficulties of an adolescent (Baplu, 
2005).
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specific criteria (Kazdin, 1984). Franklin, Gorman, Beas-
ley, and Allison (1997) distinguish three general interpre-
tive principles for visual inspection: the central location 
within phases, as well as any changes in central location 
between phases; variability in the data, including changes 
in the variation over time; and trend location within and 
between different phases of data collection. Despite these 
principles, there are some major problems with this kind 
of data analysis. First, the lack of concrete decision rules 
permits subjectivity and inconsistency in the interpreta-
tions. In addition, there is a high risk of Type I errors. 
Finally, visual analysis requires a specific pattern of data 
(e.g., a stable baseline) that often does not emerge (Cros-
bie, 1993; Kazdin, 1982; Matyas & Greenwood, 1990; 
Zhan & Ottenbacher, 2001).

Statistical analysis. In situations in which visual in-
spection is difficult to apply, statistical tests can be a valu-
able supplement (Lundervold & Belwood, 2000). The 
parametric statistical tests that are mostly used in group re-
search, such as t tests and ANOVAs, are often inappropriate 
in single-case designs, because they require assumptions 
about the data that are met rather infrequently in practice. 
Although these tests appear to be robust against the viola-
tion of such assumptions as normality and homogeneity 
of variances, this is not the case when group sizes are very 
small. In particular, the assumption that the residual errors 
should be independent is problematic in single-case data, 
because serial dependency is often present in the data. If the 
residuals are autocorrelated, the results from t and F tests 
can be seriously biased. Variations of those tests, such as 
the analysis proposed by Gentile, Roden, and Klein (1972), 
also appear to be inappropriate (Crosbie, 1993). Therefore, 
the use of parametric tests on single-case data should be 
discouraged, unless it can be convincingly shown that the 
necessary assumptions are met (see, e.g., Gorman & Al-
lison, 1997; Hooton, 1991; Kazdin, 1982; Ludbrook, 1994; 
Recchia & Rocchetti, 1982; Todman & Dugard, 2001).

The proposed alternatives to these parametric tests in-
clude time series analysis and nonparametric rank tests 
(e.g., the Mann–Whitney U test and the Kruskal–Wallis 
test). Because these are suitable for the analysis of data 
when serial dependency is present, they may be a good al-
ternative to parametric tests (Siegel, 1957). However, there 
are also some difficulties here. Rank tests lack sensitivity 
to real treatment effects when they are based on only a few 
subjects, and information may be lost because the scores 
are discarded once ranks are determined. For time series 
analysis, a large number of observations are required (vari-
ous authors have suggested at least 50 data points, which 
is much more than are typically available in applied re-
search), and such analysis is a rather complex procedure 
that involves multiple steps (see, e.g., Gorman & Allison, 
1997; Kazdin, 1982, 1984; Todman & Dugard, 2001).

Because of the difficulties with the aforementioned 
methods, we believe that randomization tests provide a 
strong alternative and may be preferred for analyzing 
single-case data. Randomization tests are statistical tests 
whose validity is based on the random assignment of units 
to treatments. By permutation of the order of the data, it is 
determined whether the same results would have been ob-

within each block. The order of the treatment conditions 
is consequently randomized independently within each 
block of treatment times (Todman & Dugard, 2001). In the 
case of two conditions, this means that the treatments are 
presented in pairs and that the order of the two members 
of the pair is determined randomly and separately for each 
block (Onghena & Edgington, 2005). Suppose that these 
two treatments, A and B, are administered in three blocks 
of one treatment pair each, so that the following 23 5 8 
assignments are possible:

AB AB AB	 BA BA BA

AB AB BA	 BA BA AB

AB BA AB	 BA AB BA

AB BA BA	 BA AB AB

If one only wants to prevent the same treatment from 
being administered on several consecutive measurement 
times, one can use an alternating treatments design. This 
design prevents the temporal clustering of treatments by 
ensuring that the randomization does not permit more than 
a specified number of successive time blocks to have the 
same treatment (Onghena & Edgington, 1994). As an ex-
ample, we will again use a total of six measurement times 
to be divided equally over two treatments, A and B. To avoid 
sequences of consecutive administrations of the same treat-
ment that are too long, we constrain the design to a maxi-
mum of two consecutive administrations of a treatment. 
This results in the following 14 possible assignments:

AABABB	 BBABAA

AABBAB	 BBAABA

ABAABB	 BABBAA

ABABAB	 BABABA

ABABBA	 BABAAB

ABBAAB	 BAABBA

ABBABA	 BAABAB

This larger number of possible assignments, as com-
pared with a randomized block design, can be very useful, 
because the smallest possible p value that can be obtained 
with a randomization test is the inverse of the number of 
possible randomizations (see below) (Onghena & Edg-
ington, 2005). In addition, a set of possible assignments 
that is too small will lead to a statistical test with too little 
power (Ferron & Onghena, 1996; Ferron & Sentovich, 
2002; Ferron & Ware, 1995).

Data Analysis in Single-Case Designs
Visual analysis. The most commonly used method of 

data analysis in single-case research is probably still visual 
inspection. This consists of the examination of a graphi-
cal display of the data, usually with a measure of time 
plotted on the abscissa and the dependent variable on the 
ordinate. Although this may seem a completely subjective 
procedure, the data are visually inspected according to 
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a variety of UNIX platforms, as well as on Windows and 
MacOS (Hornik, 2007). It is a powerful tool for statistical 
modeling and is extremely flexible, which enables it to 
cope with difficult and unusual data sets and problems, 
making it ideal for tailoring calculations to one’s own 
specific statistical requirements (Crawley, 2005; Kelley, 
2007). This makes R the perfect software environment for 
devising one’s own randomization tests adapted to the de-
sign of a particular study. Another strength is the graphical 
possibilities of the system, which allows for very simple 
plots as well as for fine-grained control over the appear-
ance of the graphical display of the data (Dalgaard, 2002). 
A potential disadvantage is that, unlike many other statis-
tical systems, R is restricted to a command line interface, 
so working with R cannot be reduced to simple clicking 
in menus. However, various forms of graphical user in-
terfaces will probably become available soon to make R 
accessible for more users (Maindonald & Braun, 2003). 
Besides the standard packages, which contain the basic 
functions and are automatically available in the installa-
tion, R has an extensive library of add-on packages. As far 
as we know, however, no R package of randomization tests 
for single-case experimental designs exists.

Rationale of Single-Case Randomization Tests
To fill the gap left by the nonexisting R package for 

single-case randomization tests, in the following sec-
tion we provide R functions for this purpose. The R code 
needed to perform these commands can be obtained at no 
cost from ppw.kuleuven.be/cmes/SCRT-R.html. In an at-
tempt to clarify and illustrate the rationale of randomiza-
tion tests for single-case designs, a step-by-step procedure 
will be followed, in which the various stages, from design-
ing an experiment to calculating the randomization test’s 
p value, will be made clear. An overview of these steps, 
together with the R functions needed for each stage, is 
given in Figure 3. As an illustration, we will conduct, step 
by step, a randomization test for the hypothetical data set 
of Onghena (1992), displayed in Figure 1.

Step 1: Choice of design. On the basis of (among other 
things) the topic of the study, the research question, the 
stage of the research, and its practicability (available funds, 
subjects, time, etc.), one should decide whether a single-
case design is the best option. If this is the case, a choice 
must be made between the two types of randomized single-
case designs: alternation and phase designs. Although we 
will not focus on this topic in this article, one should also 
decide whether replications are needed, and if so, which 
type (simultaneous or sequential) will be best. In our illus-
trative example, we used an ABAB phase design.

Step 2: Null hypothesis, alternative hypothesis, 
and test statistic. The null hypothesis and the alterna-
tive hypothesis must be formulated before the start of the 
study. The null hypothesis tested in single-case random-
ization tests is one of no treatment effect—that is, that 
responses are independent of the treatment/condition 
under which they are observed and that performance is 
a function of factors unrelated to the treatment (Edging-
ton, 1975; Edgington & Onghena, 2007; Kazdin, 1984; 
Nichols & Holmes, 2001). The alternative hypothesis, on 

tained if the data were assigned to rearranged placements 
(Busse, Kratochwill, & Elliott, 1995).

The most important advantage of randomization tests 
is that they are nonparametric, and consequently are not 
based on distributional assumptions or assumptions about 
the homogeneity of variances or the independence of re-
siduals (Arndt et al., 1996; Hooton, 1991; Ludbrook, 1994; 
Recchia & Rocchetti, 1982; Wilson, 2007). Moreover, they 
are also free from the assumption of random sampling, an 
assumption on which the probability tables of parametric 
tests are built (Edgington, 1973; Edgington & Bland, 1993). 
Such random sampling, however, is usually an unrealistic 
ideal, and most experiments do not use randomly sampled 
subjects (Todman & Dugard, 2001). Another advantage is 
that serial dependency in the data does not affect the appli-
cation of these tests (Kazdin, 1984). Also, randomization 
tests are fairly straightforward and intelligible, as well as 
easy to apply and extremely versatile, so that researchers 
can design their experiments as they like and then devise a 
randomization test that is suitable for their particular design 
(Edgington & Onghena, 2007).

Although randomization tests do not depend on para-
metric assumptions or on the assumption of random sam-
pling, they do have one requirement: The experimenter 
has to designate certain times at which the treatment can 
be administered and then randomly assign each time to a 
treatment. This random assignment not only enhances the 
internal validity of the study, as indicated above, it also 
justifies the application of randomization tests without 
the need for random sampling (Edgington, 1980; Todman 
& Dugard, 1999). Ferron, Foster-Johnson, and Kromrey 
(2003) investigated the functioning of randomization tests 
with and without random assignment, and they concluded 
that “the absence of random assignment makes the legiti-
macy of using a randomization test more questionable” 
(p. 285) and that randomization tests need to be based on 
permutations that mirror the random assignment used in 
the experiment.

Software availability. With randomization tests, the 
computational burden can be very high. Although most of 
the examples used in this article can easily be calculated 
by hand, the number of possible combinations increases 
very rapidly with the number of observations. Therefore, 
conducting randomization tests usually requires the avail-
ability of a computer and suitable software (Edgington & 
Bland, 1993; Hooton, 1991; Recchia & Rocchetti, 1982; 
Todman, 2002). Most of the commonly used statistical 
software packages, however, present no readily available 
means for conducting single-case randomization tests. 
Todman and Dugard (2001) list some packages that do 
contain procedures for randomization tests in single-case 
designs (e.g., RANDIBM, StatXact, or SCRT), but most 
of these have disadvantages—for example, some do not 
provide tests for single-case designs for which there are 
no group alternatives; the cost is sometimes rather high; or 
they may run only under DOS and not be very flexible.

The open source implementation of the S-PLUS lan-
guage, R, can provide a solution for this problem. R can be 
downloaded freely from the CRAN Web site (Comprehen-
sive R Archive Network; cran.r-project.org) and runs on 
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lowing Onghena (1992), we will use the difference between 
the sums of means for the baseline and treatment phases:

	 T A A B B= +( ) − +( )1 2 1 2 .	

Step 3: Determination of the level of significance 
and the number of measurement times. Before gather-
ing the data, the level of significance, α, and the number 
of measurement occasions should also be determined. In 
deciding the number of measurement times, a cost–benefit 
analysis must be performed: An assessment needs to be 
made that balances the theoretical optimum and practical 
feasibility. Measurement occasions in single-case designs 
can be equated to the subjects in group designs. With just 
a few subjects in a group design, valid and reliable state-
ments in no way can be made about the eventual treatment 
effects. The same is true for single-case designs with just a 
few measurement occasions. But, of course, the higher the 
number of measurement times, the higher will be the costs 
(in money and in time) of conducting the experiment.

Linked with the number of measurement times is the 
significance level. In most studies, the significance level, 
α, is set to .05 or .01. The smallest possible p value that 
can be obtained with randomization tests, however, equals 
the inverse of the number of possible assignments (On
ghena & Edgington, 2005). This quantity depends, among 
other things, on the number of measurement occasions 
and on the selected design. Therefore, an α of .01, or even 
.05, will not always be feasible, because with too few 
possible data divisions, rejecting the null hypothesis will 
never be attainable. For the example, the total number of 
measurement occasions equals 24, and the significance 
level is .05.

Step 4: Randomization schedule and selection of 
the assignment. A final matter that needs to be dealt with 
before data collection is the randomization of an aspect of 
the design. When this matter is decided, the design of the 
experiment can be specified in detail by determining how 
the different conditions or treatments will be divided over 
the measurement times. Therefore, we have to randomly 
select one data arrangement among all theoretically pos-

the other hand, can be decided by the researcher, on the 
basis of the type of treatment effect that is expected. As 
in group studies, the hypothesis can be either directional 
or nondirectional. In general, if the direction of the effect 
can be specified, it is better to choose the one-tailed op-
tion, because the test will then be more powerful. How-
ever, if the observed difference is not in the predicted di-
rection, in that case no treatment effect will be discovered 
(Onghena, 1992).

Linked with the alternative hypothesis is the choice of 
an appropriate test statistic, because this choice can also 
be made on the basis of the expected treatment effect. An 
advantage of randomization tests over parametric tests is 
that the test statistics of the former can be much simpler, 
because they do not have to include an estimate of the 
variability, but only need to reflect the expected type of 
treatment effect. Therefore, the denominator of paramet-
ric test statistics can frequently be left out, keeping only 
the numerator (Edgington & Onghena, 2007). Further-
more, in nonparametric statistical testing, the researcher 
can choose any test statistic considered appropriate. In 
contrast, in parametric statistics, only test statistics whose 
sampling distribution under the null hypothesis is known 
can be used (Ferron & Sentovich, 2002; Maris & Oosten-
veld, 2007; Maris, Schoffelen, & Fries, 2007; Nichols & 
Holmes, 2001). Briefly, any test statistic that is sensitive 
to the predicted treatment effect can be used with random-
ization tests. Here we focus on an expected difference in 
level, which can be reflected by a difference between 
means (the numerator of the Student’s t test). For a non
directional test statistic, we can use the absolute difference 
between the means, whereas an expected direction can be 
tested by measuring a corresponding directional differ-
ence (Onghena, 1992; Onghena & Edgington, 2005).

The null hypothesis in our example states that the base-
line and the treatment conditions do not differ. Because we 
expect the undesirable behavior to be less frequent in treat-
ment phases than in baseline phases, we will use a one-
tailed alternative hypothesis, concerning a difference in 
level between the A and the B phases. As a test statistic, fol-

Choice of Design
Null Hypothesis
Alternative Hypothesis
Test Statistic

Level of Significance 
Number of Measurement Times

Randomization Schedule
quantity(design,MT,limit)
assignments(design,MT,save,limit)
Random Assignment
selectdesign(design,MT,limit)

Data Collection
Computation of Obtained Test Statistic
graph(design)
observed(design,statistic)

Construction of Randomization Distribution
distribution.systematic(design,statistic,save,limit)
distribution.random(design,statistic,save,number,limit)

p Value
pvalue.systematic(design,statistic,save,limit)
pvalue.random(design,statistic,save,number,limit)

Figure 3. Step-by-step procedure for conducting a single-case randomization test, including R functions.



474        Bulté and Onghena

Step 5: Data collection and computation of the 
observed test statistic. Now the experiment can be con-
ducted and the data collected, according to the randomly 
chosen design. The data from Onghena (1992) are shown 
in Table 1.

To make sure that the R functions provided in this article 
work well, we suggest that researchers follow a few guide-
lines when creating the text (.txt) file containing the data. The 
data frame can easily be made in a text editor (e.g., EditPad 
or Notepad) or in Excel, with the file saved as text (tab 
delimited). The data file should consist of two columns 
(if made in a text editor, separated by a tab); the first should 
contain the condition labels (A and B for alternation and AB 
designs; A1, A2, B1, and B2 for phase designs with more 
than two phases), and the second, the obtained scores. Each 
row will contain one measurement occasion. It is important 
not to label the rows or the columns.

A graphical presentation of the data, as in Figure 1, can 
be obtained with the function graph(design). In re-
sponse to this command, R will open a window to ask for 
the name of the file in which the data to be graphed can be 
found. For alternation designs, after the plot is drawn, the 
user will have to indicate where the legend should be put 
by clicking within the graph with the cursor.

When performing a randomization test, one first has 
to calculate the observed test statistic from the obtained 
raw data (Adams & Anthony, 1996). Because of the small 
number of scores involved in our example, this can easily 
be calculated by hand:

	T A A B B= +( ) − +( ) = + − + =1 2 1 2 4 3 2 1 4( ) ( ) .	

For more (or more complex) data, the R function 
observed(design,statistic) can be convenient. 
The second argument refers to the test statistic that should 
be used. For alternation designs and AB phase designs, 
there are three built-in possibilities: A-B, B-A, and |A-B |, 
which stand for the difference (or absolute value of the dif-
ference) between the condition means. For phase designs 
with more than two phases, six more options are available: 
PA-PB, PB-PA, and |PA-PB | refer to the (absolute value 
of the) difference between the means of the phase means, 
and AA-BB, BB-AA, and |AA-BB | represent the (abso-
lute value of the) difference between the sums of the phase 
means. Of course, by making small adjustments to the code, 
other test statistics could easily be adopted. In response to 
the command, R will ask for the file in which the data can 
be found. To calculate the test statistic in our example, the 
command would be observed(design="ABAB", 
statistic="AA-BB"), which gives the same result as 
our calculation by hand (i.e., 4).

Step 6: Constructing the randomization distribu-
tion. The rationale of randomization tests is that they con-

sible permutations. Because it can become rather laborious 
work to first list all the possible data arrangements and 
then choose one, it can be helpful to have an R function that 
does the job instead. For the ABAB design in our example, 
this means that we should specify the minimum number 
of measurement times for each phase. Suppose that we set 
this minimum to four for each of the four phases.

To determine how many possible data arrangements 
there are for a specific design, the function quantity 
(design,MT,limit) can be used. This function has 
the arguments design (AB, ABA, ABAB, CRD (com-
pletely randomized design), RBD (randomized block de-
sign) or ATD (alternating treatments design)), MT (num-
ber of measurement times), and limit (equal to the 
minimum number of observations per phase, for phase 
designs, or the maximum number of consecutive admin-
istrations of the same condition, for alternating treatment 
designs). In the case of our example, this means that the 
following should be entered in the R console: quantity
(design="ABAB",MT=24,limit=4). The result of 
this computation is 165, which means that for an ABAB 
design with 24 measurement times and a minimum of 
four measurement occasions per phase, the total number 
of possible data arrangements is 165.

When there are as many possibilities as in our example 
(or even many more), it would take a lot of time and ef-
fort to enumerate them by hand. Therefore, we created 
the R function assignments(design,MT,save,
limit). It has the same arguments as the quantity 
function, plus one extra: With the save argument (ei-
ther "yes" or "no"), the user can indicate whether he 
or she wants to save the possible assignments to a file 
(save="yes") or just see it as output in the R console 
(save="no"). If one chooses to save the assignments 
in a text file, a window will pop up in which one can 
indicate where to save it. It can be saved in an existing 
file, or a new file can be created by inputting a file name 
with the .txt extension. In the latter case, R will ask for 
confirmation (“The file does not exist yet. Create the 
file?”). For our example, suppose that we do not want to 
save the possible assignments. The suitable R command 
is then assignments(design="ABAB",MT=24, 
save="no",limit=4). As output, we will get the 165 
possible assignments, which are listed at ppw.kuleuven 
.be/cmes/SCRT-R.html.

Instead of numbering all possible assignments and then 
randomly choosing one by means of a random number  
generator, the function selectdesign(design,MT, 
limit) can be used. For our example, the command  
selectdesign(design="ABAB",MT=24, 
limit=4) could generate the following sequence of mea-
surement times: A1 A1 A1 A1 A1 A1 B1 B1 B1 B1 B1 B1 
A2 A2 A2 A2 A2 A2 B2 B2 B2 B2 B2 B2.

Table 1 
Hypothetical Data From Onghena (1992), Collected in an ABAB Design 

With 24 Measurement Times

Condition A1A1A1A1A1A1 B1B1B1B1B1B1 A2A2A2A2A2A2 B2B2B2B2B2B2
Score  6 2 5 3 4 4  1 2 3 1 3 2  2 3 4 2 4 3  0 1 2 0 2 1
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argument is set to “yes”, a second window will open 
in which one can input the name of the file to which the 
randomization distribution should be saved.

In the example, the number of possible assignments was 
165, which means that 165 different test statistics need to 
be calculated in order to obtain the exact randomization 
distribution. Since this does not take too much compu-
tational time, we will use the systematic version: dis-
tribution.systematic(design="ABAB", 
statistic="AA-BB",save="no",limit=4). The 
obtained randomization distribution is given in Table 2.

Step 7: Assessing the p value. By locating the ob-
served test statistic in the randomization distribution, the 
statistical significance of the outcome can be obtained 
(Murray, Varnell, & Blitstein, 2004; Strauss, 1982). The 
proportion of test statistics in the randomization distribu-
tion that exceed or equal the observed test statistic gives 
the randomization test’s p value. When this value is less 
than or equal to the predetermined value of α, the null 
hypothesis is rejected, and the alternative hypothesis can 
be accepted (Potvin & Roff, 1993).

In line with the function for constructing the randomiza-
tion distribution, there are also two versions of the func-
tion for calculating the p value: pvalue.systematic 
(design,statistic,save,limit)  and 
pvalue.random(design,statistic,save, 
number,limit). With the save argument, the user has 
the possibility of saving the randomization distribution, 
used to compute the p value, to a file, even though it is not 
printed as output in the R console. To calculate the p value 
for the hypothetical data set of Onghena (1992), pvalue 
.systematic(design="ABAB",statistic 
="AA-BB",save="no",limit=4) has to be input 
as a command in the R console. This gives a p value of 
.0242, which is smaller than the predetermined signifi-
cance level of .05. From this, the null hypothesis of no 
difference between the treatment and baseline phases can 
be rejected, a result that concurs with the tentative conclu-
sion from our visual inspection of the data.

Discussion
Single-case designs and randomization tests to analyze 

the resulting data are rarely used by researchers. Part of 

sider all possible recombinations of the data, given the 
randomization procedure that was used in the study (Tod-
man, 2002). The null hypothesis states that no effect of the 
different conditions will occur. This means that, under the 
null hypothesis, the obtained responses will be the same as 
those that would have been obtained under any other ran-
dom ordering (Edgington, 1975; Edgington & Onghena, 
2007; Kazdin, 1984; Nichols & Holmes, 2001). To test 
this null hypothesis, the test statistic for every possible 
random division of the data that could occur under the 
null hypothesis has to be calculated (Adams, Gurevitch, & 
Rosenberg, 1997; Edgington, 1975; Solow, 1993). There-
fore, the score obtained for each measurement time is kept 
fixed, but the conditions assigned to the measurement 
times are randomly shuffled according to the possible or-
derings. The test statistics are then sorted in ascending 
order, which forms the randomization distribution under 
the null hypothesis (an equivalent of the sampling distri-
bution in parametric statistical testing).

With a large amount of data, it will not be feasible to 
compute the test statistics for all possible permutations. 
When a systematic randomization test, which calculates 
all of the test statistics, becomes computationally cum-
bersome, a random version, in which a random sample 
of the test statistics is calculated instead, can be chosen 
(Besag & Diggle, 1977). This “nonexhaustive random-
ization test” does not use the entire distribution, but only 
a simulated one. In this way, the enormous calculation 
capacity that would otherwise be required is reduced 
(Recchia & Rocchetti, 1982). Depending on whether 
all possible permutations (the “systematic” procedure) 
or only a random sample (the “random” procedure) 
is carried out, either an exhaustive or a nonexhaus-
tive randomization distribution will be obtained. The 
R function for the systematic randomization distribu-
tion is distribution.systematic(design, 
statistic,save,limit). In the random version, 
distribution.random(design,statistic, 
save,number,limit), one additional argument, 
number, is needed: With it, one can indicate how many 
randomizations are required (e.g., 1,000). In response to 
the command, a pop-up window will appear asking for 
the file from which the data should be read. If the save 

Table 2 
Exhaustive Randomization Distribution for the Data From Onghena (1992)

1.0000 1.0500 1.0909 1.1833 1.2000 1.2409 1.3500 1.3909 1.4500 1.5000 1.5000
1.5000 1.5536 1.5833 1.6250 1.6548 1.6833 1.6833 1.8000 1.8214 1.8536 1.8770
1.8833 2.0000 2.0036 2.0333 2.1000 2.1136 2.1214 2.1250 2.1250 2.1548 2.1667
2.2167 2.2227 2.2500 2.2500 2.2500 2.2955 2.2964 2.3036 2.3333 2.3333 2.3536
2.3690 2.4000 2.4000 2.4036 2.4048 2.4048 2.4136 2.4167 2.4417 2.4500 2.4964
2.4964 2.4964 2.5045 2.5119 2.5119 2.5119 2.5227 2.5333 2.5393 2.5417 2.5500
2.5833 2.5833 2.6214 2.6250 2.6250 2.6310 2.6333 2.6417 2.6417 2.6500 2.6857
2.7000 2.7167 2.7286 2.7341 2.7429 2.7500 2.7500 2.7500 2.8000 2.8393 2.8393
2.8393 2.8393 2.8417 2.8500 2.8500 2.8556 2.8667 2.8690 2.8714 2.8714 2.9000
2.9286 2.9333 2.9500 2.9500 2.9583 2.9667 2.9750 2.9762 3.0222 3.0667 3.0714
3.0833 3.0833 3.0857 3.0857 3.1250 3.1250 3.1250 3.1393 3.1556 3.1667 3.1786
3.1786 3.2143 3.2143 3.2167 3.2750 3.2857 3.2917 3.2917 3.2976 3.3000 3.3691
3.3714 3.3714 3.3714 3.3750 3.3750 3.3833 3.3833 3.4000 3.4286 3.4667 3.5000
3.5198 3.5238 3.5333 3.5357 3.5476 3.6048 3.6056 3.6750 3.7143 3.7143 3.7143
3.7500  3.7556  3.8214  3.8571  3.9167  3.9500  3.9643  4.0000  4.1250  4.1250  4.2000
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an alternative option is to use a Monte Carlo version with 
10,000 randomizations to compute the p value: pvalue.
random(design="CRD",statistic="A-
B",save="no",number=10000). This gives a p 
value of .4926, on the basis of which we cannot reject 
the null hypothesis. Thus, the randomization test provides 
insufficiently convincing evidence for the efficacy of 
methylphenidatum in this adolescent. This is in line with 
a visual inspection of the data, which revealed a slightly, 
but not conclusively, positive effect of the medication, 
with somewhat fewer concentration difficulties in the 
treatment condition than with the placebo. Also, on the 
basis of Baplu’s qualitative research, which consisted of 
interviews and observation sessions, no clear distinction 
between the conditions could be made. Because the meth-
ylphenidatum did not seem to have clinically or statisti-
cally significant effects on the adolescent’s concentration 
difficulties, she decided that this medication was not the 
best solution for this boy’s problems.

The R functions in this article are limited to AB, ABA, 
and ABAB phase designs and to completely randomized, 
alternating treatments, and randomized block alternation 
designs. An interesting direction for future research will 
be to use the generic capabilities of  R to extend these func-
tions to deal with other types of single-case experimental 
designs—for instance, interaction designs or designs with 
more than two conditions. It would also be interesting to 
develop more tools to efficiently analyze data from si-
multaneous and sequential replicated single-case experi-
ments, to calculate different measures of effect size, and 
to incorporate more visual procedures for analyzing data.
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