
Original Article

Skewness and Kurtosis
in Real Data Samples

María J. Blanca,1 Jaume Arnau,2 Dolores López-Montiel,1

Roser Bono,2 and Rebecca Bendayan1

1Faculty of Psychology, Department of Psychobiology and Methodology, University of Malaga,
Spain, 2Faculty of Psychology, Department of Behavioural Sciences Methodology, University of

Barcelona, Spain

Abstract. Parametric statistics are based on the assumption of normality. Recent findings suggest that Type I error and power can be adversely
affected when data are non-normal. This paper aims to assess the distributional shape of real data by examining the values of the third and fourth
central moments as a measurement of skewness and kurtosis in small samples. The analysis concerned 693 distributions with a sample size
ranging from 10 to 30. Measures of cognitive ability and of other psychological variables were included. The results showed that skewness
ranged between �2.49 and 2.33. The values of kurtosis ranged between �1.92 and 7.41. Considering skewness and kurtosis together the results
indicated that only 5.5% of distributions were close to expected values under normality. Although extreme contamination does not seem to be
very frequent, the findings are consistent with previous research suggesting that normality is not the rule with real data.
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Monte Carlo computer simulation studies are used in a wide
variety of conditions to identify the effect that the violation
of assumptions, such as independence, normality, and
homoscedasticity, may have on Type I error and power.
Although earlier studies indicated that analysis of variance
is robust to normal distribution violations with large samples
(Cochran, 1947; Pearson, 1931; Scheffé, 1959; Srivastava,
1959), more recent research has reported a substantial effect
on the power and Type I error rates of parametric techniques
in these situations (Bradley, 1978; Clinch & Keselman,
1982; Levine & Dunlap, 1982; Rassmussen, 1985). For
example, although several studies have shown that the F sta-
tistic is robust when groups have the same distribution with
a balanced design (Sawilowsky & Blair, 1992; Schmider,
Ziegler, Danay, Beyer, & Bühner, 2010; Wu, 2007), the
Type I error rate increases and power diminishes when dis-
tributions differ in shape (Glass, Peckham, & Sanders, 1972;
Harwell, 2003; Lix, Keselman, & Keselman, 1996; Tiku,
1964, 1971; Wilcox, 1995).

These findings indicate that a normal distribution of data
cannot be assumed simply on the basis of the robustness of
parametric statistics, and that it needs to be checked prior to
proceeding with the selected statistical test. Furthermore,
there is evidence to suggest that real data are often not nor-
mally distributed. Micceri (1989) analyzed the distributional
characteristics of over 400 large-sample achievement and
psychometric measures and found several classes of contam-
ination in addition to asymmetry and tail weight. Other
researchers have also found a variety of non-normal distri-
butions in social and health sciences data, with different

shapes and degrees of skewness and kurtosis (Brown,
Weatherholt, & Burns, 2010; Harvey & Siddique, 1999,
2000; Hwang & Satchell, 1999; Kobayashi, 2005; Kondo,
1977; Qazi, DuMez, & Uckun, 2007; Shang-Wen &
Ming-Hua, 2010; Van Der Linder, 2006).

One of the most widely used procedures for assessing
distributional shape is Fisher’s measure of skewness (c1)
and kurtosis or the coefficient of excess (c2), based on the
third and fourth central moments. Values of c1 = 0 indicate
a symmetrical shape, positive values mean that the curve is
skewed to the right (right-tail), and negative values suggest
skewing to the left (left-tail). The c2 coefficient has fre-
quently been considered in the literature as a measure of
peakedness and flatness, although other interpretations have
also been proposed (Balanda & MacGillivray, 1988, 1990;
DeCarlo, 1997; Ruppert, 1987). Values of c2 = 0 mean that
the data show the same kurtosis as a normal distribution,
N(0,1), whereas positive values are interpreted as being
more peaked and negative ones as flatter than the normal.
However, it has been argued that the information obtained
from these coefficients can be misleading, above all with
small sample sizes (An & Ahmed, 2008; Bonato, 2011;
Henderson, 2006; Hill & Dixon, 1982; Micceri, 1989),
and alternative robust measures have been proposed (Brys,
Hubert, & Struyf, 2006; Groeneveld, 1998; Groeneveld &
Meeden, 1984; Hill & Dixon, 1982; Hogg, 1974, 1982;
Hogg, Fisher, & Randles, 1975; Reed & Stark, 1996).
Nevertheless, the majority of simulation studies are based
on the modification of c1 and c2, with two algorithms
widely used for simulating the non-normality distribution
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condition: Fleishman’s power transformation method
(Fleishman, 1978), extended to the multivariate situation
by Vale and Maurelli (1983), and the generalized lambda
distribution system (Ramberg, Dudewicz, Tadikamalla, &
Mykytka, 1979).

In these simulation studies, researchers usually select
either values of c1 and c2 that represent a well-known distri-
bution (e.g., exponential, double exponential, or lognormal
distributions) or several values that define non-known distri-
butions that are considered to represent the real-world situ-
ation. In these cases, absolute values of c1 and c2 less than
1.0 tend to be categorized as slight non-normality, values
between 1.0 and about 2.3 are regarded as moderate non-
normality, and values beyond 2.3 correspond to severe
non-normality (Lei & Lomax, 2005).

The aim of this paper is to assess the distributional shape
of real data by examining the values of c1 and c2 in small
samples and thereby obtain a criterion for selecting their
proper values in Monte Carlo studies. Small samples are
considered because they correspond to what is commonly
found in social science publications (Fernández, Vallejo,
Livacic-Rojas, & Tuero, 2010; Keselman et al., 1998).
Specifically, the analysis concerned 693 distributions corre-
sponding to measures of cognitive ability and other psycho-
logical variables that were derived from 130 different
populations, with sample size ranging from 10 to 30.

Method

Sample

The analysis focused on 693 distributions derived from natu-
ral groups formed in institutions and corresponding to 130dif-
ferent populations,with sample size ranging from10 to 30.Of
these distributions, 192 were obtained from archive data of
high school pupils, 175 were from psychometric studies,
and 326 were measures from correlational studies regarding
several variables. Measures of cognitive ability (N = 323)
and other psychological variables (N = 370)were considered.
Themeasures of ability included scores on theDominoes Test
(D-48), the Differential Aptitudes Test, Primary Mental
Aptitudes, Letter Squares, the Identical Forms Test, the
Differences Perception Test, Situation-1, the Toulouse-Piéron
Test, the Global and Local Attention Test, the Magallanes
Visual Attention Scale, and the General Intelligence Factor
Test. Themeasures of psychological variables included scores
on the Revised Eysenck Personality Questionnaire, the State-
Trait Anxiety Inventory, the Family Environment Scale, the
Big-Five Questionnaire, the Beck Depression Inventory, the
State-Trait Anger Expression Inventory, the Self-Report
Altruism Scale, and the Spanish Psychosocial Scale. Table 1

presents the descriptive statistics related to sample size as a
function of the type of measurement.

Procedure

The data were obtained by request to several research
groups from Spanish universities and had to fulfill the fol-
lowing requirements: (a) sample size between 10 and 30;
(b) they were derived from groups formed in institutions
such as classrooms, hospitals, etc.; (c) they had not under-
gone any data treatment; and (d) they represented measure-
ments of a psychological variable. Requests for data were
also made to several high schools for archive data that
met the same conditions.

Data Analysis

For each distribution, c1 and c2 values were calculated as
measurements of skewness and kurtosis based on the third
and fourth central moments, respectively, as follows:

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p
n� 2

m3

m3=2
2

ð1Þ
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where n is the sample size, mk ¼
Pn
i¼1
ðxi � �xÞk=n, and �x is

the sample mean.
The results are presented in the form of descriptive sta-

tistics of c1 and c2, box plots, values as a function of sample
size, and frequency of contamination from normal distribu-
tions. In order to determine the degree of contamination, 11
cut-off points were arbitrarily established to define contam-
ination in skewness and kurtosis (see Table 2). As regards

Table 1. Descriptive statistics related to sample size as a function of type of measurement (N = 693)

Variables Mean Median Mode Standard deviations Minimum Maximum

Ability 20.57 21 24 5.09 10 30
Other psychological variables 20.02 20 21 4.66 10 29

Table 2. Arbitrary cut-off points to define contamination

Interval Skewness/kurtosis

< �2.25 Very extreme negative
�2.25, �1.76 Extreme negative
�1.75, �1.26 High negative
�1.25, �0.76 Moderate negative
�0.75, �0.26 Slight negative
�0.25, 0.25 Near normal
0.26, 0.75 Slight positive
0.76, 1.25 Moderate positive
1.26, 1.75 High positive
1.76, 2.25 Extreme positive
> 2.25 Very extreme positive
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absolute values, six cut-off points were also established to
define contamination with respect to combined skewness
and kurtosis, from near normal to very extreme contamina-
tion. A chi-square test was applied to compare the contam-
ination between the ability measures and the measures of
other psychological variables.

Results

Table 3 shows the descriptive statistics of skewness and kur-
tosis for each type of variable and for all distributions. The
values of skewness range between �2.49 and 2.33, with a
mean of 0.02 and 0.52 in absolute values. The values for
kurtosis range between �1.92 and 7.41, with a mean of
0.14 and 0.92 in absolute values.

Figures 1 and 2 show the box plots of skewness and kur-
tosis. Values of skewness greater than 1.6 and less than�1.5
are considered outliers for all distributions. For kurtosis, val-
ues greater than 2.7 appear as outliers. These box plots sug-
gest a relatively symmetric distribution of skewness and
asymmetric one of kurtosis (right-tail).

Figure 3 shows the values of skewness and kurtosis in
absolute values as a function of sample size. Both are inde-
pendent of sample size, with correlation coefficients near
zero: .03 and �.02, respectively. These results indicate that
values of skewness and kurtosis are similar across the sam-
ples with between 10 and 30 individuals.

Table 4 shows the percentage of contamination accord-
ing to the arbitrary cut-off points. In relation to skewness
the results show that 30.9% of the distributions present neg-
ative values, 34.1% values close to a symmetrical distribu-
tion, and 35% a positive value. As regards kurtosis,

Table 3. Descriptive statistics of skewness and kurtosis

Mean Median Mode Standard deviations Minimum Maximum Range

Ability (N = 323)
Skewness �0.09 �0.04 �0.15 0.58 �2.49 1.80 4.43
Skewness (abs) 0.45 0.37 0.05 0.39 0 2.49 2.49
Kurtosis �0.05 �0.26 �0.71 1.17 �1.62 7.41 9.02
Kurtosis (abs) 0.83 0.70 0.60 0.82 0.01 7.41 7.40

Other psychological variables (N = 370)
Skewness 0.12 0.11 0.15 0.75 �2.43 2.33 4.76
Skewness (abs) 0.58 0.41 0.30 0.49 0 2.43 2.43
Kurtosis 0.31 �0.03 �0.30 1.41 �1.92 6.82 8.74
Kurtosis (abs) 1.00 0.73 0.30 1.05 0 6.82 6.82

All distributions (N = 693)
Skewness 0.02 0.02 0.00 0.69 �2.49 2.33 4.83
Skewness (abs) 0.52 0.39 0.05 0.45 0 2.49 2.49
Kurtosis 0.14 �0.17 �0.30 1.32 �1.92 7.41 9.33
Kurtosis (abs) 0.92 0.71 0.30 0.95 0 7.41 7.41

Note. abs = absolute value.
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Figure 1. Box plot of skewness and kurtosis as a function of type of variable.
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Table 4. Percentage of contamination according to the arbitrary cut-off points of skewness and kurtosis as a function of
type of variable

Skewness Kurtosis

Interval Label A PV All A PV All

< �2.25 Very extreme negative 0.3 0.3 0.3 – – –
�2.25, �1.76 Extreme negative 0.9 0.3 0.6 – 0.3 0.1
�1.75, �1.26 High negative 1.9 4.1 3.0 4.0 5.1 4.7
�1.25, �0.76 Moderate negative 9.0 5.4 6.9 24.8 17.0 20.6
�0.75, �0.26 Slight negative 21.1 18.9 20.1 21.1 19.7 20.3
�0.25, 0.25 Near normal 38.1 30.5 34.1 20.4 18.1 19.2
0.26, 0.75 Slight positive 25.1 22.2 23.5 12.1 14.1 13.2
0.76, 1.25 Moderate positive 3.4 11.1 7.5 8.0 7.0 7.6
1.26, 1.75 High positive – 5.1 2.8 5.3 4.3 4.7
1.76, 2.25 Extreme positive 0.3 1.9 1.1 0.3 4.6 2.5
> 2.25 Very extreme positive – 0.3 0.1 4.0 9.7 7.0

Note. A = Ability; PV = Other psychological variables; All = All distributions.
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Figure 2. Box plot of skewness and kurtosis for all distributions.
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Figure 3. Values of skewness and kurtosis in absolute values as a function of sample size (N) (vertical bars represent ±2
standard deviations).
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45.7% of the distributions present a negative value, 19.2%
values close to a normal distribution, and 35.1% a positive
value.

Table 5 shows the joint distribution of skewness and kur-
tosis across the arbitrary cut-off points of contamination.
Only 5.5% of the distributions were close to expected values
under normality. The highest percentage of distributions
found, 12.3%, corresponds to values of skewness between
�0.25 and 0.25 and of kurtosis between �1.25 and �0.76.

Of the 11 cut-off points, six were established, indepen-
dently of the sign, to define contamination with combined
skewness and kurtosis values. These six points correspond
to the squares indicated in Table 5. The maximum values
of skewness and kurtosis are shown in Table 6 with the per-
centage of distributions as a function of the type of variable.
The results show that ability measures are less contaminated
than are measures of other psychological variables,
v2(5) = 25.394, p < .01.

Discussion

The aim of this paper was to assess the distributional shape
of real data by examining the values of skewness and kurto-
sis in small samples. A total of 693 distributions, including

measures of cognitive ability and other psychological vari-
ables, were analyzed. For each distribution, c1 and c2 values
were calculated as measurements of skewness and kurtosis
based on the third and fourth central moments, respectively.

The results indicate that values of c1 ranged between
�2.49 and 2.33, with 34.1% presenting values close to a
symmetrical distribution. Values of c2 ranged between
�1.92 and 7.41, and only 19.2% presented values close to
zero. Furthermore, kurtosis values far from zero were more
frequent than were values of skewness. Both coefficients
were independent of sample size.

Table 5. Percentage of distributions as a function of the arbitrary cut-off points for contamination by skewness and
kurtosis

Skewness 

Kurtosis <
-2.25

-2.25, 
-1.76

-1.75, 
-1.26

-1.25, 
- 0.76

-0.75, 
-0.26

-0.25, 
0.25

0.26, 
0.75

0.76, 
1.25

1.26, 
1.75

1.76, 
2.25

>
2.25

< -2.25 - - - - - - - - - - -

-2.25, -1.76 - - - - - 0.1

-1.75, -1.26 - - - - 0.6 3.2 0.9 - - - -

-1.25, - 0.76 - - - 0.4 3.8 12.3 4 0.1 - - -

-0.75, -0.26 - - - 0.7 4.8 8.9 4.9 1 - - -

-0.25, 0.25 - - - 0.4 5.5 5.5 5.8 2 - - -

0.26, 0.75 - - - 1.6 2.6 2.5 4.9 1.3 0.3 - -

0.76, 1.25 - - - 1.7 1.2 1.2 2 0.9 0.6 - -

1.26, 1.75 - - 0.3 1.6 0.4 0.3 0.9 0.7 0.6 - -

1.76, 2.25 - - 0.4 0.4 0.6 - 0.1 0.3 0.6 0.1 -

> 2.25 0.3 0.6 2.3 0.1 0.6 0.1 - 1.2 0.7 1 0.1

Table 6. Percentage of distributions as a function of the
arbitrary cut-off points of contamination

Maximum values
of skewness and/or kurtosis Label A PV All

0, |0.25| Near normal 6.2 4.9 5.5
|0.26, 0.75| Slight 41.5 38.4 39.9
|0.76, 1.25| Moderate 38.7 31.2 34.5
|1.26, 1.75| High 9.3 11.1 10.4
|1.76, 2.25| Extreme 0.3 4.9 2.6
|> 2.25| Very extreme 4.0 9.7 7.0

Note. A = Ability; PV = Other psychological variables; All = All
distributions.
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Considering c1 and c2 jointly, only 5.5% of the distribu-
tions were close to expected values under normality. Overall,
39.9% of distributions were slightly non-normal, with max-
imum values (in absolute terms) of both coefficients being
in the range 0.26–0.75. A further 34.5% of distributions were
moderately non-normal, with values in the range 0.76–1.25.
Finally, 10.4% of distributions showed high contamination
(range 1.26–1.75), while 2.6% and 7% can be considered
as presenting extreme (range 1.76–2.25) and very extreme
(> 2.25) contamination, respectively. Thus, 74.4% of distri-
butions presented either slight or moderate contamination,
while 20% showed a more extreme contamination. These
results indicate that normality is not the rule with small sam-
ples and are consistent with the conclusions of other
researchers who have found a variety of non-normal distribu-
tions in social and health sciences data (Brown et al., 2010;
Harvey & Siddique, 1999, 2000; Hwang & Satchell, 1999;
Kobayashi, 2005; Kondo, 1977; Micceri, 1989; Qazi et al.,
2007; Shang-Wen & Ming-Hua, 2010; Van Der Linder,
2006). However, extreme departures from the normal distri-
bution do not seem to be very frequent in the distributions
analyzed here. The present results also indicate that ability
measures are less contaminated than are measures of other
psychological variables such as personality, anxiety, depres-
sion, etc., being this finding consistent with Micceri (1989).

The real data analyzed here did not represent values of
skewness and kurtosis as those used in many Monte Carlo
studies of statistical robustness. This suggests that research-
ers might improve the relevance of their robustness findings
by using a range of typical, for their discipline, empirical
rather than theoretical distributions. At all events, research-
ers should check rather than assume that data are normally
distributed, and should consider using the nonparametric sta-
tistics and tests with robust estimators that have been pro-
posed as alternatives to parametric tests for independent
groups and repeated measures if the power and Type I
and Type II error rates are distorted (e.g., Akritas & Brunner,
1997a, 1997b, 2003; Brunner, Domhof, & Langer, 2002;
Brunner & Puri, 2002; Heritier, Cantoni, Copt, & Victoria-
Feser, 2009; Keselman et al., 2008; Luh & Guo, 2001,
2004; Rauf, Werner, & Brunner, 2008; Shah & Madden,
2004; Wilcox, 1993, 2001, 2002, 2003, 2005, 2009; Wilcox
& Keselman, 2001).
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