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Various statistical methods, developed after 1970, offer the opportunity to substan-
tially improve upon the power and accuracy of the conventional t test and analysis
of variance methods for a wide range of commonly occurring situations. The
authors briefly review some of the more fundamental problems with conventional
methods based on means; provide some indication of why recent advances, based
on robust measures of location (or central tendency), have practical value; and
describe why modern investigations dealing with nonnormality find practical prob-
lems when comparing means, in contrast to earlier studies. Some suggestions are
made about how to proceed when using modern methods.

The advances and insights achieved during the last
half century in statistics and quantitative psychology
provide an opportunity for substantially improving
psychological research. Recently developed methods
can provide substantially more power when the stan-
dard assumptions of normality and homoscedasticity
are violated. They also help deepen our understanding
of how groups differ. The theoretical and practical
advantages of modern technology have been docu-
mented in several books (e.g., Hampel, Ronchetti,
Rousseeuw, & Stahel, 1986; Hoaglin, Mostelier, &
Tukey, 1983, 1985; Huber, 1981; Rousseeuw & Le-
roy, 1987; Wilcox, 1997a, 2001, 2003) and journal
articles. Yet, most applied researchers continue to be-
lieve that conventional methods for making inferences
about means perform well in terms of both controlling
the Type I error rate and maintaining a relatively high
level of statistical power. Although several classic ar-
ticles describe situations in which this view is correct,

more recent publications provide a decidedly different
picture of the robustness of conventional techniques.
In terms of avoiding actual Type I error probabilities
larger than the nominal level (e.g., � � .05), modern
methods and conventional techniques produce similar
results when groups have identical distributions.
However, when distributions differ in skewness or
have unequal variances, modern methods can have
substantially more power, they can have more accu-
rate confidence intervals, and they can provide better
control over the probability of a Type I error. We also
indicate why some commonly used strategies for cor-
recting problems with methods based on means fail,
and we summarize some recent strategies that appear
to have considerable practical value.

Articles summarizing some of the basic problems
with conventional methods and how they might be
addressed have appeared in technical journals (e.g.,
Wilcox, 1998a) and basic psychology journals (e.g.,
Wilcox, 1998b). Wilcox (2001) also provided a non-
technical description of practical problems with con-
ventional methods and how modern technology ad-
dresses these issues. Our goal here is to expand on this
previous work by summarizing some recent ad-
vances.1 But first, we review basic principles moti-
vating modern methods.
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We do not promote a single approach to data analy-
sis but rather argue that modern technology as a whole
has much to offer psychological research. No single
statistical method is ideal in all situations encountered
in applied work. In terms of maximizing power, for
example, modern methods often have a considerable
advantage, but the optimal method depends in part on
how the groups differ in the population, which will be
unknown to the researcher. Modern methods can also
provide useful new perspectives that help us develop
a better understanding of how groups differ. In the
Appendix to this article, we provide an overview of
statistical software that can implement the modern
methods to be described.

Some Basic Problems

We begin with the one-sample case in which the
goal is either (a) to test

H0: � � �0,

the hypothesis that the population mean � is equal to
some specified constant �0, or (b) to compute a con-
fidence interval for �. When data in a single sample
are analyzed, two departures from normality cause
problems: skewness and outliers.

Skewness

First, we illustrate the effects of skewness. Imagine
we want to assess an electroencephalographic (EEG)
measure at a particular site in the brain for individuals

convicted of murder. If we randomly sample n par-
ticipants, the most commonly used approach is to es-
timate the population mean � with the sample mean,
M. The conventional 1 − � confidence interval for
� is

M � t1−��2� SD

�n
�, (1)

where SD is the sample standard deviation and t1−�/2

is the 1 − �/2 quantile of Student’s t distribution with
n − 1 degrees of freedom. This confidence interval is
based on the assumption that

T =
M − �

SD��n
(2)

has a Student’s T distribution. If this assumption is
reasonably correct, control over the probability of a
Type I error, when hypotheses are tested, will be
achieved.2

Following an example by Westfall and Young
(1993), suppose that unknown to us, observations are
sampled from the skewed (lognormal) distribution
shown in the left panel of Figure 1. The dotted line in
the right panel of Figure 1 shows the actual distribu-
tion of T when n � 20. The smooth symmetrical
curve shows the distribution of T when a normal dis-

2 We are following the convention that uppercase letters
represent random variables and lowercase letters represent
specific values (e.g., Hogg & Craig, 1970). So T represents
Student’s T random variable, and t represents a specific
value, such as the .975 quantile.

Figure 1. The left panel shows a lognormal distribution. The right panel shows an approxi-
mation of the distribution of Student’s T when 20 observations are sampled from a lognormal
distribution. The solid line represents the distribution under normality.
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tribution is sampled. As is evident, there is a serious
discrepancy between the actual distribution of T ver-
sus the distribution under normality, and this results in
very poor control over the probability of a Type I
error when n � 20. Westfall and Young (p. 40) noted
that problems with controlling the probability of a
Type I error persist even when n � 160. When the
stated alpha is equal to .10, and when one is perform-
ing a two-tailed test, the actual probability of a Type
I error for the lower tail is .11 (vs. �/2 � .05). For the
upper tail, the actual probability of a Type I error is
.02. Thus, when one is performing the usual two-
tailed test at the .10 level, the actual probability of a
Type I error is .11 + .02 � .13.

Any hypothesis-testing method is said to be unbi-
ased if the probability of a Type I error is minimized
when the null hypothesis is true; otherwise, it is said
to be biased. In cases such as the example above,
where for the lower tail the actual probability of a
Type I error is less than �/2, power can actually de-
crease as the true mean increases (Wilcox, 2003). This
means that for a two-tailed test, Student’s T is biased.
That is, there are situations in which we are more
likely to reject when the null hypothesis is true versus
when it is false.

Extending the Westfall and Young (1993) results,
we find that for the same skewed distribution, but
with n � 200, the actual Type I error probability
when a lower tailed test is used is .07, and for n �
250 it is .06. That is, if we happen to be sampling

from a lognormal distribution, and if an actual Type I
error probability less than or equal to .08 is deemed
adequate, nonnormality is not an issue in terms of
Type I error probabilities and accurate confidence in-
tervals with a sample size of at least 200.

Now, to expand on the problems with Student’s T
summarized by Westfall and Young (1993), suppose
observations are sampled from the skewed distribu-
tion3 shown in Figure 2. Among a sample of obser-
vations, outliers are more common versus the lognor-
mal in Figure 1. The dotted line in the left panel of
Figure 3 shows 5,000 T values with n � 20. The
smooth symmetrical curve is the distribution of T as-
suming normality. Under normality there is a .95
probability that T will be between −2.09 and 2.09;
these are the .025 and .975 quantiles of the distribu-
tion of T. However, when one samples from the dis-

3 This distribution arises by sampling from a chi-square
distribution having 4 degrees of freedom, and with prob-
ability .1 multiplying an observation by 10. (That is, gen-
erate X from a chi-square distribution, generate u from a
uniform distribution, and if u < .1, multiply X by 10.) When
one is sampling from this distribution with n � 20, the
median number of outliers is 2; the mean is about 1.9; and
with probability about .95, the number of outliers is less
than or equal to 3. Based on n � 10,000 values, the skew-
ness and kurtosis of this distribution are 4.98 and 34.89,
respectively. The lognormal distribution has skewness and
kurtosis equal to 6.2 and 113.9, respectively.

Figure 2. A skewed, heavy-tailed distribution that is formed in a manner similar to the
contaminated normal distribution. More precisely, sample observations from a chi-square
distribution with 4 degrees of freedom, and with probability .1, multiply an observation by 10.
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tribution in Figure 2, these quantiles are approxi-
mately −8.50 and 1.29, respectively. The right panel
of Figure 3 shows a plot of 5,000 T values when n �
300. There is closer agreement with the assumed dis-
tribution. Under normality, the .025 and .975 quan-
tiles are approximately −1.96 and 1.96, respectively.
However, the .025 and .975 quantiles of the actual
distribution of T are approximately −2.50 and 1.70.
The mean of the distribution shown in Figure 2 is
7.60. If we conduct a one-tailed test of H0: � � 7.60
at the .05 level, the actual probability of a Type I error
is approximately .1, twice the nominal level. The cor-
rect critical value under normality is −1.96, but when
sampling from the distribution in Figure 2, it is −2.50.
In practical terms, the results of these examples illus-
trate that when the sample size is small (n � 20), the
Type I error rate and the confidence intervals can be
highly inaccurate when the data are skewed. These
problems diminish as the sample size increases, but
substantial problems may arise even with n � 300
when outliers are likely to occur.

Realistic Departures From Normality

One could argue that in theory problems might
arise but that in applied work problems are never as
serious as suggested by Figures 1 and 3. The bumpy
curve in Figure 4 shows a bootstrap approximation of
the sampling distribution of Student’s T based on data
(with n � 20) taken from a study comparing hang-
over symptoms of sons of individuals with alcoholism

with a control group.4 (These data had skew and kur-
tosis equal to 2.30 and 7.60, respectively.) Figure 4
was created by resampling with replacement 20 ob-
servations from the first group, computing T, repeat-
ing this 5,000 times, and plotting the results. Again,
there is a serious discrepancy between the estimated
distribution and the distribution of T under normality.

Figure 5 shows a second example using data from
a study about the sexual attitudes of young adults.5

Undergraduate males were asked how many sexual
partners they desired over the next 30 years. The
bumpy curve in Figure 5 shows an approximation of
the distribution of Student’s T. (The skew and kurtosis
are 5.68 and 37, respectively.) Despite a larger sample
size (n � 104), there is still a substantial difference
between the bootstrap estimate of the actual distribu-
tion of T versus the distribution under normality. In
fact, there were actually 105 observations, one of
which was an extreme outlier that we excluded. If this
outlier is included, it makes the bootstrap estimate of
the distribution of T even more asymmetrical than
shown in Figure 4. The hypothetical distribution in
Figure 2, as well as the illustration in Figure 3, clearly
does not underestimate problems that can occur.

In Figures 4 and 5, the sampling distribution of T

4 These data were provided by M. Earelywine (personal
communication, 1998).

5 These data were provided by W. Pedersen (personal
communication, 1999).

Figure 3. Probability density function of Student’s T when sampling from the skewed,
heavy-tailed distribution in Figure 2. The left panel is with n � 20, and the right is with n
� 300. Even with n � 300, control over the probability of a Type I error is unsatisfactory.
The solid line represents the distribution of T under normality. The dotted line represents the
actual distribution of T.
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was approximated by resampling with replacement
observations from the original data, computing T, and
repeating this process 5,000 times. A reasonable con-
cern is that perhaps this does not give us a true indi-
cation of how Student’s T performs in applied work.

That is, the original data might provide a poor ap-
proximation of the true (population) distribution, and
if we could sample repeatedly from the true distribu-
tion, perhaps Student’s T would perform in a more
satisfactory manner. However, other work, summa-

Figure 4. An approximation of the distribution of T based on data from a study dealing with
sons of individuals with alcoholism. The approximation is obtained by resampling data with
replacement, computing T, repeating this process 5,000 times, and plotting the resulting T
values. The x-axis represents the possible values of T. The arrows indicate the location of the
central 95% of the T values. When one is sampling from a normal distribution, these central
T values fall between the two vertical lines of the smooth symmetrical curve.

Figure 5. An approximation of the distribution of T based on data from a study dealing with
the sexual attitudes of young adults. The approximation is based on the same strategy used
to create Figure 4.
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rized in Wilcox (1997a), suggests that the figures pre-
sented here do not overestimate the practical problems
with Student’s T.

Outliers and Power

Even when distributions are symmetrical in the
population, practical problems can occur. These situ-
ations arise when one is sampling from heavy-tailed
distributions, in which case outliers are common. In-
deed, small departures from normality, which can be
very difficult to detect, can substantially reduce power
when using conventional methods (e.g., Staudte &
Sheather, 1990).6 The basic problem is that small
changes in any distribution, including normal distri-
butions as a special case, can greatly increase the
variance, which in turn lowers power.

As an example, imagine that the data include two
groups, say individuals who have or do not have
schizophrenia. Assume that 90% of these individuals
do not have schizophrenia and that these individuals
have a standard normal distribution (� � 0 and � �
1, where � is the population standard deviation) on
the dependent measure. Further assume that the indi-
viduals with schizophrenia also have a normal distri-
bution with the same mean but with a much larger
standard deviation of 10 (� � 0, � � 10). If we pool
these two groups and randomly sample an individual,

we are randomly sampling from what is called a con-
taminated normal distribution. Figure 6 shows this
particular contaminated normal distribution and a
standard normal distribution. What is important here
is that there is little visible difference between these
two distributions, yet their standard deviations differ
substantially—for the standard normal � � 1, but for
the contaminated normal distribution � � 3.30. This
example illustrates the fundamental principle that the
standard deviation is highly sensitive to the tails of a
distribution.

The sensitivity of the variance to slight changes in
the tails of a distribution has many important impli-
cations, one being the effect on power. To illustrate
this effect in the two-sample case, consider the left
panel of Figure 7, which shows two normal distribu-
tions (�1 � 0, �1 � 1; �2 � 1, �2 � 1). If we
sample 25 observations from each and test the hy-
pothesis of equal means with Student’s T at the .05
level, power is .96. Now look at the right panel of

6 The best-known metric is the Kolmogorov metric,
which is used by the Kolmogorov–Smirnov test of fit. Oth-
ers are the Lipshitz metric, the Lévy metric, and the Pro-
horov metric, but the details are too invovled to give here
(see Huber, 1981).

Figure 6. Normal and contaminated normal distributions. The solid line represents a stan-
dard normal distribution, and the dashed line represents a contaminated normal distribution.
The normal distribution has variance 1, and the contaminated normal distribution has variance
10.9, illustrating that variance is highly sensitive to the tails of a distribution.
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Figure 7, which contains two contaminated normal
distributions. (The same amount of contamination is
used as in Figure 6: �1 � 0, �1 � 3.30; �2 � 1, �2

� 3.30). Despite the right panel’s obvious visual
similarity to the left panel, if we sample from the two
contaminated normal distributions, now power is only
.28. Power decreases mainly because outliers are
more common when one is sampling from the con-
taminated normal distribution. One effect of the out-
liers is that they inflate the sample variance, SD2,
which in turn lowers the value of Student’s T. A sec-
ond effect is that the probability of a Type I error is
less than the nominal alpha level, and this contributes
somewhat to lower power.

Of course, as the sample size increases, the power
of Student’s T will increase when one is sampling
from the contaminated normal distribution. However,
for the contaminated normal distribution, the power of
the conventional t test will always be less than the
power achieved with modern techniques. Modern
methods are specifically designed to avoid potential
power problems associated with methods based on
means due to sampling from heavy-tailed distribu-
tions.

The low power associated with Student’s T might
appear to contradict earlier publications claiming that
Student’s T maintains high power under nonnormal-
ity. The reason for the apparent discrepancy is that
these researchers studied power based on a standard-
ized difference between the means:

� =
�1 − �2

�p

,

where �2
p � �2

1 � �2
2 is the assumed common vari-

ance. Unfortunately, � is not robust; very slight
changes in a distribution in the population can sub-
stantially alter its value. In the left panel of Figure 7,
for example, � � 1, but in the right panel it is only .3.
This result illustrates that relying on � can grossly
underestimate the degree to which two distributions
differ. Considering only �, power should be less for
the situation in the right panel versus the left. How-
ever, from a practical point of view, surely it is de-
sirable to have about as much power when sampling
from the contaminated distributions in the right panel
versus the two normal distributions in the left panel.
Methods that achieve this goal are now available,
some of which are described below.

In summary, there are three general problems when
using Student’s T. First, skewness can cause problems
when one is trying to control the probability of a Type
I error. Problems are serious when one is sampling
from relatively light-tailed skewed distributions7 and
they get worse as one moves toward situations in
which outliers are common. Second, Student’s T can

7 The lognormal distribution has been characterized by
some as being heavy tailed, a conclusion that seems reason-
able based on its kurtosis, but Gleason (1993) argued that it
is more accurately characterized as being light tailed. We
have checked the expected number of outliers when sam-
pling from a lognormal distribution, and our results support
Gleason’s view. As illustrated by Figure 6, the variance is
highly sensitive to the tails of a distribution. Conventional
measures of skewness and kurtosis are even more sensitive.

Figure 7. Power and nonnormality. In the left panel, Student’s T has power .96, but in the
right panel power is only .28.
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be biased when one is sampling from a skewed dis-
tribution, which in turn can result in low power rela-
tive to alternative modern methods (described later).
Many attempts have been made to correct problems
due to skewness, but no satisfactory technique has
been found when attention is restricted to means.
Third, outliers can result in very low power when one
is using Student’s T compared with modern methods
even when one is sampling from a perfectly sym-
metrical distribution.

Simple Transformations

A common recommendation when dealing with
nonnormality is to use simple transformations of the
data. That is, each value is transformed in the same
manner by taking logarithms, or square roots, or using
more complex approaches such as the class of Box–
Cox transformations (e.g., Cook & Weisberg, 1999).
Unfortunately, simple transformations do not guard
against low statistical power when one is sampling
from heavy-tailed distributions (e.g., Rasmussen,
1989; also see Doksum & Wong, 1983). Simple trans-
formations can alter skewed distributions so that they
are more symmetrical, but they do not deal directly
with outliers. Sometimes the number of outliers is
decreased, but typically outliers remain, and in some
cases the number of outliers actually increases. For
example, Wilcox (2003, Table 8.4) reported data from
a study of self-awareness. For the second group in that
example, the data are skewed to the right and a single
outlier is found. When logarithms are taken, the data
have a more symmetrical distribution, but the number
of outliers increases from one to three. What is needed
are transformations that deal directly with outliers and
eliminate their deleterious effects. One such transfor-
mation is trimming, which is discussed later in this
article.

The Two-Sample Case: New Versus
Old Findings

The properties of the one-sample t test just sum-
marized provide a framework for explaining the dis-
crepancy between conclusions of earlier and more re-
cent investigations regarding the robustness of
conventional techniques such as the two-sample t test
and analysis of variance (ANOVA). Consider again
the example of the EEG measure of murderers, and
imagine the researcher’s goal is to compare these par-
ticipants with a control group. Let F1(x) be the prob-
ability that a randomly sampled murderer has an EEG
measure less than or equal to x. Thus, F1(3) is the

probability of a reading less than or equal to 3, and
F1(1) is the probability of a reading less than or equal
to 1. Similarly, let F2(x) be the probability that a ran-
domly sampled participant from the control group has
an EEG measure less than or equal to x. These two
distributions are identical if for any x we might pick,
F1(x) � F2(x). Of course, in this particular case, both
groups have identical variances as well as the same
amount of skewness. If equal sample sizes are used, it
can be shown that when groups have the same skew-
ness, the difference between the sample means will
have a perfectly symmetrical distribution. This sug-
gests that, generally, the actual probability of a Type
I error will not exceed the nominal level of alpha
when one is sampling from identical, nonnormal dis-
tributions. Empirical evidence for this view was re-
ported by Sawilowsky and Blair (1992), and this is
exactly what was found in numerous other studies
summarized in Wilcox (1997a).

However, unlike the better known earlier robust-
ness studies, more recent investigators have consid-
ered situations in which the two distributions differ in
shape. Theory suggests that such situations are more
likely to cause practical problems when one is using
conventional methods or indeed any method aimed at
comparing means. These more recent studies show
that when distributions differ in skewness, conven-
tional methods might provide poor control over the
probability of a Type I error as well as inaccurate
confidence intervals (e.g., Wilcox, 1996). That is,
nonnormality becomes a practical issue when distri-
butions differ in shape.

Yet another problem with conventional methods
occurs when there is heteroscedasticity (unequal vari-
ances in the groups). Even when groups have a
normal distribution, heteroscedasticity can cause con-
ventional tests to be biased. Moreover, a basic re-
quirement of any statistical method is consistency—it
should converge to the correct answer as the sample
size increases. Thus, if alpha is set to .05, the actual
probability of a Type I error should approach .05 as
the number of observations gets large. Cressie and
Whitford (1986) described general conditions in
which Student’s T does not enjoy this property be-
cause it is using the wrong standard error.

When sample sizes are equal and each group has a
normal distribution in the population, comparing two
groups with Student’s T controls the probability of a
Type I error fairly well except possibly with very
small sample sizes, regardless of how unequal the
variances might be (Ramsey, 1980). However, when
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we look at a broader range of situations, this is the
exception rather than the rule. In fact, a rough rule is
that the more groups we compare, the more conven-
tional methods become sensitive to violations of as-
sumptions.

Practical problems with heteroscedasticity might
appear to contradict classic studies. Box (1954)
showed good control over the Type I error rate under
conditions of normality when the group variances
were not equal. However, Box’s numerical results
were based on situations in which, among the groups
being compared, the largest standard deviation di-
vided by the smallest did not exceed √3. As this ratio
increases, or when group distributions are nonnormal,
practical problems arise (e.g., Wilcox, 1987). Wilcox
(1987) found in a survey of studies that this ratio
frequently exceeds 4. A more recent review of the
education and psychology literature by Keselman et
al. (1998) found ratios as large as 23.8. Grissom
(2000) reviewed just one issue of the Journal of Con-
sulting and Clinical Psychology, finding that the ra-
tios of the variances exceeded 3 in many cases and
went as high as 282.

Another classic study by Ramsey (1980) demon-
strated that if two groups are being compared via
Student’s T, sampling is from normal distributions,
and equal sample sizes are used, reasonable control
over the probability of a Type I error is achieved. The
only exception Ramsey identified was for very small
sample sizes. More recent investigations (e.g., Wil-
cox, Charlin, & Thompson, 1986) extended the con-
ditions studied by Ramsey and showed that problems
controlling the probability of a Type I error can ap-
pear (a) under normality with equal sample sizes
when comparing four or more groups; (b) under nor-
mality with unequal sample sizes when there are two
or more groups; or (c) under nonnormality when com-
paring two or more groups, even when sample sizes
are equal.

A reasonable suggestion for trying to salvage ho-
moscedastic methods is to test the assumption of
equal variances. However, in practice this strategy can
fail even under normality (Markowski & Markowski,
1990; Moser, Stevens, & Watts, 1989; Wilcox et al.,
1986). Tests for equal variances rarely have enough
power to detect differences in variances of a magni-
tude that can adversely affect conventional methods.
In some situations, even testing for unequal variances
at the � � .25 level does not increase power suffi-
ciently. Additional concerns and issues related to
popular methods for testing the hypothesis of equal

variances are described in DeCarlo (1997), Keyes and
Levy (1997), and Wilcox (1990, 2002a).

Alternative methods based in part on weighted least
squares estimation can be used to address heterosce-
dasticity. Improvement over conventional methods is
achieved, but problems persist, even under normality
(Wilcox et al., 1986). Large sample sizes do correct
problems with Type I errors and power when using
these heteroscedastic techniques, but methods for
judging the adequacy of sample sizes require more
research before one can be recommended.

In summary, Student’s T provides adequate control
over the Type I error rate when one is comparing
groups with identical distributions. However, in many
situations the distributions will not be identical and it
is difficult for researchers to discern this in practice.
Further, when the distributions associated with groups
differ in skewness, or have unequal variances, or
when outliers are likely to occur, the power of Stu-
dent’s T can be relatively poor. Poor power when
there are outliers is a problem that plagues any
method based on sample means.

Comparing Skewed Distributions

A brief consideration of three strategies for com-
paring two skewed distributions might be helpful be-
fore continuing. One strategy would be to compare all
of the quantiles simultaneously. For example, we
could compare the .10 quantiles of the two groups, the
.25 quantiles (first quartile), the .50 quantiles (medi-
ans), the .75 quantiles (third quartiles), and the .90
quantiles. This strategy provides information about
how both the central portions and the tails of the
distributions differ. Even when one is comparing
symmetrical distributions, this strategy, known as the
shift function, provides a more detailed sense of how
groups differ beyond any comparison based on a
single measure of location or dispersion. The prob-
ability of at least one Type I error can be controlled
exactly using an extension of the Kolmogorov–
Smirnov test (Doksum & Sievers, 1976). Moreover,
Doksum and Sievers proposed an interesting and use-
ful graphical method for getting a global sense of how
groups compare. Power appears to be relatively good
when there are no tied values among the pooled data
(Wilcox, 1997b). However, to the extent that tied val-
ues do occur, power can be low relative to other ap-
proaches to be described. (When using S-PLUS, or
the free software R, which can be obtained as indi-
cated in the Appendix, the computations are per-
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formed by the function sband in Wilcox, 1997a, 2003,
which also plots the shift function.)

Another strategy for comparing skewed distribu-
tions is to compare groups based on a single measure
of location (or central tendency) that is near the cen-
tral portion of the data. One advantage of using a
single measure of location is that it can be applied to
virtually all of the commonly used experimental de-
signs. Comparing medians is perhaps the most obvi-
ous strategy, but if the goal is to maintain high power
under normality or when sampling from relatively
light-tailed distributions, alternatives to the median
are preferable, two of which are described later in this
article.

A third strategy is to use a specific measure of
location that reflects the tails of a distribution and has
some particular theoretical or practical interest. For
example, if only the top 10% of applicants are hired,
researchers may wish to compare the .90 quantiles.
However, even when there is interest in comparing
the tails of skewed distributions, alternatives to means
can have practical value. Wilcox (2003, section 8.3)
presented an R (or S-PLUS) program pb2gen for com-
paring specific quantiles.

Discarding Outliers

One strategy for dealing with outliers is to discard
them and apply methods for means to the data that
remain. There are two fundamental problems with this
strategy. The first is that outlier detection methods
based on means and variances can easily fail to iden-
tify outliers. A second and perhaps more serious prob-
lem is that when extreme values are discarded, the
remaining observations are no longer independent un-
der random sampling (e.g., Hogg & Craig, 1970). The
dependence induced by eliminating outliers invali-
dates the derivation of the standard error of the sample
mean. Wilcox (2001) illustrated how, from a practical
point of view, ignoring this latter issue can be highly
unsatisfactory.

Here we illustrate the problem with the data (n �
20) used to create Figure 4. Imagine that the two
smallest and two largest observations are discarded. If
we compute the usual standard error based on the
remaining data, we get 1.63. This is a theoretically
unsound estimate because it does not take into ac-
count the correlation among the remaining data. A
theoretically correct estimate yields 2.59 and can be
calculated using the R or S-PLUS function trimse.
The standard error of a trimmed mean is related to

what is called the Winsorized variance (Staudte &
Sheather, 1990). Computing the Winsorized variance
is easily done as described in Wilcox (1997a, 2003).
Here, we used the S-PLUS (or R) function trimse in
Wilcox (2003). (See the library of functions described
in the Appendix.) In this illustration, a fixed propor-
tion of observations was trimmed. When discarding
only those points that are declared to be outliers, simi-
lar problems occur, but now a different method for
getting a theoretically correct estimate of the standard
error is needed. For example, if we use a rule based on
the median (given by Equation 3 below) for detecting
outliers and we compute the usual standard error
based on the remaining data, we get .13. However,
using a theoretically correct method for estimating the
standard error, implemented in the R or S-PLUS func-
tion bootse (Wilcox, 2003), yields an estimate of .57,
more than 4 times larger. Moreover, given that the
standard errors computed using the usual formula are
too small when outliers are discarded, poor control
over the probability of a Type I error can result.

Situations may arise with a large sample size in
which using a theoretically correct estimate of the
standard error makes little practical difference. Cur-
rently, however, the only way to determine whether
this is the case is to use a theoretically correct esti-
mate. That is, there are no guidelines on how large the
sample size must be or how many outliers can be
discarded before the usual formula for the standard
error yields problematic results. Our recommendation
is that the theoretically correct standard errors be
computed routinely using one of the software pack-
ages discussed in the Appendix.

Detecting Outliers

Outlier detection rules based on the mean and
sample standard deviation suffer from a problem
called masking. Suppose the value X is declared an
outlier if it is more than 2 standard deviations from the
mean. In symbols, declare X an outlier if

|X − M|

SD
� 2.

Masking means that the very presence of outliers can
destroy the ability of this method to detect unusually
large or small values. Consider, for instance, the val-
ues 2, 2, 3, 3, 3, 4, 4, 4, 100,000, 100,000. Surely
100,000 is unusual versus the other values, but
100,000 is not declared an outlier using the method
just described. Outliers inflate both the sample mean
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and the standard deviation, but in a certain sense they
have more of an effect on the standard deviations,
which causes outliers to be missed.

There are various outlier detection methods for
dealing with masking (Barnett & Lewis, 1994). Per-
haps the best known is the standard box plot with
improvements recently provided by Carling (2000).
Among robust methods, one popular procedure for
dealing with masking is to replace the sample mean
with the median and to replace the standard deviation
with a measure of dispersion called the median abso-
lute deviation (MAD) statistic (see Wilcox, 1997a,
p. 24). Based on the observations, X1, . . . Xn, MAD is
the median of the set of absolute values of the differ-
ences between each score and the median. That is,
MAD is the median of |X1 − Mdn|, . . . , |Xn − Mdn|.
Then the ith value, Xi, is declared an outlier if

|Xi − Mdn|

MAD/.6745
� 2.24. (3)

(The constant .6745 rescales MAD so that the de-
nominator estimates � when one is sampling from a
normal distribution.) Thus, in the case of a normal
distribution, the left side of Equation 3 estimates |X −
�|/�. Applying this rule in the previous illustration,
Mdn � 3.50 and MAD/.6745 � .74, so for 100,000,
the value for the outlier statistic is 134,893, which is
clearly greater than 2.24.

The outlier detection method just described, based
on MAD and the median, is a commonly used robust
method. However, our use of this rule is not intended
to suggest that looking at data, and scrutinizing it for
unusual values, is to be avoided. Exploratory methods
play an important role when one is analyzing and
understanding data. However, for certain purposes,
particularly when testing hypotheses, specifying an
explicit rule for detecting outliers is essential.

Consider a location estimator �̂, such as the sample
mean or median. When one is testing hypotheses, the
typical strategy is to derive an expression for the
standard error of �̂. However, when one is using es-
timators aimed at dealing with outliers, theoretically
sound estimates of standard errors are not immedi-
ately obvious. For example, if we use a trimmed mean
(described later in article), the standard error is esti-
mated based in part on a Winsorized variance. If we
compute a one-step M estimator that uses MAD and
the median to determine whether a value is unusually
large or small, the resulting expression for the stan-
dard error has a complex form that differs substan-
tially from the standard error of a trimmed mean

(Huber, 1981). If we use a subjective method for
eliminating outliers when testing hypotheses, it is un-
clear how to get a theoretically correct estimate of the
standard error.

Another reason for specifying a specific outlier de-
tection rule is so that we can study its performance
when attention is focused on estimating a measure of
location. If the goal is to get good power under a wide
range of situations, we search for an estimator that has
a relatively low standard error, regardless of the dis-
tribution in the population. Such studies cannot be
undertaken without specifying a specific outlier de-
tection method. Again, this is not to argue against
exploratory methods. However, when attention turns
to inferential methods, being precise about how out-
liers are detected is essential.

Robust Measures of Location

There are two general strategies for comparing two
or more groups that address the problem of low power
due to nonnormality: robust measures of location and
rank-based methods. Space limitations preclude a
consideration of rank-based methods (see Wilcox,
2003). Robust measures of location can be further
subdivided into two types. The first type simply re-
moves or trims a fixed proportion of the smallest and
largest observations and averages the data that re-
main. The amount trimmed is not determined by first
checking for outliers. The optimal amount of trim-
ming in any given application is unknown, but 20%
appears to be a reasonable default value based on the
criteria of achieving a small standard error and con-
trolling the probability of a Type I error (e.g., Wilcox,
2003). The term 20% trimming means that if the data
are put in ascending order, the largest 20%, as well as
the smallest 20%, are trimmed. If we have 10 obser-
vations, 20% trimming consists of removing the two
largest and smallest values and averaging the rest.

The second general approach to robust estimation
of location is to check the data for outliers, remove
any that are found, and average the values that remain.
One estimator related to this type that has received
considerable attention is the one-step M estimator (see
Huber, 1981; Staudte & Sheather, 1990; Wilcox,
2001, 2003). Let MADN � MAD/.6745, which esti-
mates � under normality. Count the number of obser-
vations, i1, for which (Xi − M)/MADN < −1.28, and
count the number of observations, i2, for which (Xi −
M)/MADN > 1.28. A one-step M estimator is
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�̂os =

1.28�MADN��i2 − i1� + �
i−i1+1

n−i2

X�i�

n − i1 − i2
,

where X(1) � X(2) � 	 	 	 � X(n) are the observations
written in ascending order. As previously indicated,
an expression for the standard error of this estimator
has been derived and a method for estimating it is
available (Wilcox, 1997a). However, the more effec-
tive methods for testing hypotheses based on a one-
step M estimator, described below, do not use an es-
timate of the standard error.

The term 1.28(MADN)(i2 − i1) in �̂os arises for
technical reasons (e.g., Staudte & Sheather, 1990;
Wilcox, 1997a). Ignoring it yields the so-called modi-
fied one-step M estimator (MOM):

1

n − i1 − i2 �
i=i1+1

n−i2

X�i�.

Now, however, to achieve a reasonably small standard
error under normality, i1 is the number of observations
for which (Xi − M)/MADN < −2.24, and i2 is the
number for which (Xi − M)/MADN > 2.24. The one-
step M estimator is a bit more satisfactory in terms of
achieving a relatively small standard error, but MOM
has advantages when one is testing hypotheses and
sample sizes are small.

Comments on Trimmed Means

Fixing the proportion of observations to be
trimmed, without looking at the data, avoids certain
theoretical problems when one is testing hypotheses.
In particular, expressions for standard errors are much
easier to derive (see Wilcox, 2003, for details). Also,
generalizations of heteroscedastic methods for means
to trimmed means are available that improve control
over the probability of a Type I error, reduce bias, and
provide substantial increases in power in situations in
which all methods based on means perform poorly.
To maintain high power under normality, yet achieve
high power when outliers are common, a good com-
promise between the mean and median is a 20%
trimmed mean.

Figure 8 graphically illustrates one of the practical
advantages of a 20% trimmed mean. Twenty obser-
vations were randomly sampled from a standard nor-
mal distribution, the mean and 20% trimmed mean
were computed, and this process was repeated 5,000
times. The means are plotted as a solid line and the
trimmed means as a dashed line in Figure 8. Under
these optimal conditions, the sampling distribution of
the sample mean has a smaller standard error than the
sampling distribution of the 20% trimmed mean.
However, the advantage of the mean over the 20%
trimmed mean is not very striking. Now we repeat this
computer experiment, only we sample from the con-

Figure 8. A plot of 5,000 means and 20% trimmed means (dashed line). Each mean and
20% trimmed mean is based on 20 observations randomly sampled from a normal distribu-
tion. Despite the fact that there was 20% trimming from both tails, the 20% trimmed mean
has a standard error nearly as small as as the standard error of the mean.
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taminated normal distribution shown in Figure 6. Fig-
ure 9 shows the results. Now the sampling distribution
of the 20% trimmed mean is more tightly centered
around zero, the value being estimated. That is, the
standard error of the 20% trimmed mean is substan-
tially smaller than the standard error of the mean,
even though 8 of 20 observations are being trimmed
in each sample.

One way of explaining the large standard error of
the sample mean in Figure 9 is as follows. The stan-
dard error of the sample mean is �/√n, where �2 is the
variance of the distribution from which observations
were randomly sampled. The contaminated normal
distribution has a larger variance than the standard
normal distribution. The basic problem is that �2 is
extremely sensitive to the tails of any distribution. In
contrast, the standard error of the sample trimmed
mean is less affected by changes in the tails of a
distribution. As a result, its standard error can be sub-
stantially smaller.

Because the fact that trimming data can result in a
substantially lower standard error may be difficult to
grasp, we provide an alternative perspective. Imagine
that 20 observations are randomly sampled from a
standard normal distribution, and consider the small-
est value. The probability that the smallest value is
within 1 standard deviation of the population mean is

only .03. Similarly, the probability that the largest
observation is within 1 standard deviation of the mean
is .03. That is, there is a high probability that the
smallest and largest values will be relatively far from
the population mean.

Now suppose we put the observations in ascending
order. Now the probability that the two middle values
are within a half standard deviation of the population
mean is .95. This would seem to suggest that the
middle values should be given more weight when one
is estimating �, because they are more likely to be
close to � than the smallest and largest values. More-
over, it might seem that the median would be a more
accurate estimate of �, on average, than the sample
mean. Yet when sampling from a normal distribution,
we know that the sample mean is optimal. This result
occurs because when we put observations in ascend-
ing order, they are no longer independent. That is, if
X1, . . ., Xn is a random sample, and if we put these
values in ascending order yielding X(1) � X(2) � 	 	 	
� X(n), it can be seen that for any i < j, X(i) and X(j) are
dependent (e.g., Hogg & Craig, 1970; Wilcox, 2001)
and have a nonzero correlation. Under normality and
random sampling, these correlations are such that the
sample mean provides a more accurate estimate of �
(based on mean square error) versus the median or
any trimmed mean. However, when there are small

Figure 9. The observed distribution of 5,000 means and 20% trimmed means, illustrating
that the standard error of a 20% trimmed mean can be substantially smaller than the standard
error of the mean. Each mean and 20% trimmed mean is based on 20 observations randomly
sampled from the contaminated normal distribution in Figure 6. The range of values is larger
versus Figure 8 because when one is sampling from a contaminated normal distribution, there
is more variability among the sample means.
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departures from normality, the correlations no longer
salvage the mean from the deleterious effects of the
smallest and largest values among a batch of numbers.
Extreme values increase the standard error of the
mean in general, and trimming them reduces this
problem. When working with means, problems with
power were noted nearly a half a century ago by Ba-
hadur and Savage (1956), and results published by
Laplace (see Hald, 1998, p. 449) foreshadowed the
difficulties we know today. Indeed, Laplace described
general conditions under which the median has a
smaller standard error than the mean.

How Much Trimming Should Be Used?

How many observations should be trimmed when
using a trimmed mean? We do not want to trim too
much in the event that sampling is from a normal
distribution. However, we do not want to trim too
little in case we are sampling from a heavy-tailed
distribution such as the contaminated normal distri-
bution in Figure 6. Of course, in practice, we will not
know the distribution in the population. On the basis
of the criterion of achieving a relatively small stan-
dard error, Rosenberger and Gasko (1983) recom-
mended 20% in general, but for small sample sizes
they suggested using 25% instead. More trimming
might be beneficial in situations in which a large num-
ber of outliers frequently occur. In terms of Type I
errors, theory and simulations suggest that problems
due to nonnormality diminish as the amount of trim-
ming increases (Wilcox, 1996). This provides an ar-
gument for using medians, but it ignores power. As a
means of avoiding low power under normality and
substantially improving on our ability to control the
probability of a Type I error, again, 20% trimming is
an excellent choice (Wilcox, 2003).

An Illustration

In theory, the sample mean can have a large stan-
dard error relative to some other estimators, but can it
really make a difference which estimator is used when
working with real data? Consider the data given in
Wilcox (2001, p. 83). The general goal was to inves-
tigate issues related to self-awareness and self-
evaluation and to understand the processes involved
in reducing negative affect when people compare
themselves with some standard of performance or cor-
rectness. One phase of the study consisted of compar-
ing groups in terms of their ability to keep a portion of
an apparatus in contact with a specified target. For the
first group, the estimated standard error of the sample

mean is 136 versus 56.10 for the 20% trimmed mean.
For the second group the estimated standard errors for
the mean and 20% trimmed mean were 157.90 and
69.40, respectively. Thus, using trimmed means can
result in much higher power. The usual Student’s T
test has a significance level of .47. Yuen’s (1974) test
for trimmed means, which addresses both outliers and
heteroscedasticity, has a significance level of .05.
Yuen’s test was calculated with the S-PLUS function
yuen in (Wilcox, 1997a, 2003).

What Is Being Tested When Robust Estimators
Are Used?

Robust estimators such as MOM, M estimators, and
trimmed means are aimed at estimating the typical
response given by participants. When sampling from
a symmetrical distribution, their population values are
identical to the population mean. For this special case
only, trimmed means, M estimators, and MOM pro-
vide alternative methods for estimating and testing
hypotheses about �. However, when distributions are
skewed, they estimate not � but rather some value
that is typically closer to the bulk of the observations.

To avoid misconceptions about trimmed means in
particular, and robust estimators in general, it might
help for us to elaborate somewhat on how a popula-
tion trimmed mean is defined. (For a more technical
description, see Staudte & Sheather, 1990.) Consider
again the lognormal distribution in the left panel of
Figure 1. The .10 and .90 quantiles of this distribution
are 0.28 and 3.60, respectively. The population 10%
trimmed mean is the average of all possible observa-
tions that fall between the .10 and .90 quantiles,
namely 0.28 and 3.60. Similarly, the .20 and .80 quan-
tiles are 0.43 and 2.32, respectively. The population
20% trimmed mean is the average for all possible
participants, if they could be measured, provided their
observed outcome is between 0.43 and 2.32. In con-
trast, the population mean is the average of all pos-
sible outcomes regardless of how small or large they
might be. Put another way, a population trimmed
mean is the population mean of a transformed distri-
bution in which the tails of the distribution are elimi-
nated.

A sample trimmed mean does not represent an at-
tempt to estimate the population mean of the whole
distribution. Rather, the goal is to estimate the popu-
lation trimmed mean. When distributions are skewed,
the population trimmed mean is typically closer to the
bulk of the observations than the population mean.
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For the lognormal distribution in Figure 1, the popu-
lation mean is 1.65, and the population 20% trimmed
mean is 1.11.

The left panel of Figure 10 shows the location of
the population mean, median, and 20% trimmed mean
for a lognormal distribution. When computing a 20%
trimmed mean based on a sample from this distribu-
tion, we are attempting to estimate 1.11, the popula-
tion trimmed mean shown in Figure 10. The right
panel shows the population mean, median, and 20%
trimmed mean for the skewed, heavy-tailed distribu-
tion in Figure 2. Now a sample 20% trimmed mean
represents an attempt to estimate the value 3.90. Note
that in both cases, the population mean lies relatively
far from the most typical values. When one is com-
paring two groups, methods based on trimmed means
are used for testing the hypothesis that the population
trimmed means are identical.

Basic Bootstrap Methods

In terms of getting accurate confidence intervals
and controlling the probability of a Type I error, ex-
tant investigations indicate that when one is compar-
ing groups based on trimmed means or M estimators,
some type of bootstrap technique has practical value.
Roughly, as the amount of trimming decreases, the
benefit of some type of bootstrap method increases.
From a technical point of view, analytic solutions ex-
ist for both the 20% trimmed mean and one-step M
estimator (e.g., Luh & Guo, 1999; Wilcox, 1993,

1997a), but the bootstrap offers a practical advantage
in some situations, and it appears to be the best
method for general use. Consequently, we quickly
review two basic bootstrap methods here.

Bootstrap-t Method

We first illustrate the bootstrap t using sample
means and then show how this method can be ex-
tended to 20% trimmed means. For a sample of ob-
servations, X1, . . . , Xn, a bootstrap sample is obtained
by resampling with replacement n observations from
X1, . . . , Xn, which we label X*1 , . . . , X*n . For example,
if our original sample has observations 1, 2, 4, 5, 3,
one possible bootstrap sample is 4, 4, 3, 2, 3. The
basic idea behind the bootstrap-t method is to estimate
the null distribution of some appropriate analog of
Student’s T. In the one sample case, for example,
when the goal is to make inferences about the popu-
lation mean, �, we approximate the distribution of

T =
M − �

SD��n
(4)

as follows: (a) Generated a bootstrap sample; (b) com-
puted the mean and standard deviation based on this
bootstrap sample, which are labeled M* and SD*,
respectively; and (c) compute T* as follows:

T* =
M* − M

SD��n
.

Figure 10. The left panel shows the location of the population mean, median, and 20%
trimmed mean for a lognormal distribution. The right panel shows their location for the
(contaminated chi-square) distribution in Figure 2.
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An approximation of the distribution of T is obtained
by repeating Steps (a)–(c) B times, yielding T1. . . . ,
T*B. That is, we can test hypotheses about � if we
know the distribution of T, but rather than assume
normality to determine its distribution, we empirically
determine its distribution based on the data available
to us.

The bootstrap t is extended to trimmed means by
computing T* as just described but replacing M with
the sample 20% trimmed mean, replacing M* with the
20% trimmed mean based on a bootstrap sample, and
replacing SD/√n with an appropriate estimate of the
standard error of a 20% trimmed mean (see Wilcox,
1997a, 2003).

A basic issue is how many bootstrap samples
should be used. One approach is to determine how
large B must be to get reasonably good control over
the probability of a Type I error. With 20% trimmed
means, B � 600 seems to be sufficient (cf. Hall,
1986). Booth and Sarkar (1998) argued that B should
be large enough so that if a different collection of B
bootstrap samples were used, this would have at most
a very small effect on the estimated significance level.
They derived an approximation of how large B must
be so that the variance associated with a bootstrap
sampling distribution is approximately equal to the
usual squared standard error. For their example, they
concluded that B � 800 should be used.

Percentile Bootstrap Method

Another basic strategy is the percentile bootstrap,
which, in contrast to the bootstrap t method, does not
use estimates of standard errors. To illustrate this
strategy, consider again testing some hypothesis about
a single population mean (�). The percentile boot-
strap uses the central 1 − � portion of the bootstrap
sample means as a 1 − � confidence interval for �.
For example, if, among 800 bootstrap sample means,
the central 95% have values between 1.40 and 3.90,
then the .95 confidence interval for � is (1.40, 3.90).
The theoretical motivation for this method arises as
follows. Suppose the goal is to test H0: � � �0,
where �0 is a specified value (e.g., IQ � 100). For a
random sample of observations, let p* be the prob-
ability that a bootstrap sample mean exceeds �0. If the
null hypothesis is true and the sample size is suffi-
ciently large, then p* will have, approximately, a uni-
form distribution (e.g., Hall, 1988; Liu & Singh,
1997). Thus, to test H0, compute the proportion of
bootstrap sample means greater than �0 and label it
p̂*. Let

p̂*m � min (p̂*, 1 − p̂*).

Then, for a two-tailed test, 2p̂*m is the estimated sig-
nificance level, so reject H0 if 2p̂*m � �.

The percentile bootstrap method is readily extended
to two groups and any measure of location, �. Let �1

and �2 be the value of � (e.g., population trimmed
means) for Groups 1 and 2, respectively, and consider
testing

H0: �1 � �2.

A set of B bootstrap estimates are computed for each
group, where the two groups are denoted by g � 1 or
g � 2. Let �̂*gb be the bth bootstrap estimate of � for
the gth group (b � 1, . . . , B). Let p̂* be the proportion
of times �̂*1b is less than �̂*2b among the B bootstrap
estimates. (Otherwise stated, if there are A instances
where �̂*1b < �̂*2b,and there are B bootstrap samples,
then p̂* � A/B.) Set

p̂*m � min(p̂*, 1 − p̂*).

Then 2p̂*m is the estimated significance level and, as in
the one-sample case, H0 is rejected when 2p̂*m � �.
The computations are performed with the R or S-
PLUS function pb2gen in Wilcox (2003) and can be
used with any measure of location. The function
trimpb2 is designed specifically for trimmed means.
Extensions for comparing multiple groups, including
dependent groups, have been derived, but no details
are given here.

When comparing means (no trimming), it is well-
known that the percentile bootstrap method performs
rather poorly relative to the bootstrap t (e.g., Westfall
& Young, 1993). However, when one is using mea-
sures of location that are relatively insensitive to out-
liers, it currently seems that some version of the per-
centile bootstrap method generally has a practical
advantage. This suggests using some type of percen-
tile bootstrap method when comparing groups based
on MOM or trimmed means. Findings in Wilcox
(2002b) and Keselman, Wilcox, Othman, and Fradette
(2002) support this approach so far.

ANOVA

Complete details about recent ANOVA methods
are beyond the scope of this article, but some com-
ments might be informative. We note that all of the
more common designs can be handled with the tech-
niques and software in Wilcox (2003) when means are
replaced by robust measures of location, and SAS
software is available as noted in the Appendix. When
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performing an omnibus test or dealing with multiple
comparisons, based on estimators that empirically
check for outliers and discard any that are found (such
as M estimators), special modifications and variations
of percentile bootstrap methods are the only tech-
niques to date that have performed well in simula-
tions.

Imagine the goal is to test

H0: �1 � 	 	 	 � �G,

the hypothesis that the typical responses among G
independent groups are identical. Note that if H0 is
true, then, by implication, all pairwise differences are
zero. That is, for any two groups j and k, j < k, H0

implies that �j − �k � 0. We define the difference
between the typical responses in groups j and k as 
jk

� �j − �k. Let 
̂ � �̂j − �̂k be an estimate of 
jk based
on data. Note that there are L � (G2 − G)/2 pairwise
differences. If the null hypothesis is true, then the
vector corresponding to all pairwise differences
should not be too far from the vector (0, . . . , 0), which
has L elements. Here we merely note that a bootstrap
method for implementing this approach is available.
The theoretical justification for this method stems
from work by Liu and Singh (1997), but certain modi-
fications are required to control the probability of a
Type I error when sample sizes are small. Keselman
et al. (2002) examined this approach and Wilcox and
Keselman (2003) extended this procedure to provide a
test based on MOM with dependent groups.

As for trimmed means, all indications are that when
sample sizes are small, bootstrap methods are gener-
ally the best choice. Even with large sample sizes and
a large number of bootstrap replications (B), typically
analyses can be performed quickly on modern com-
puters, often requiring less than a minute.

Choosing a Method and a Measure of
Central Tendency

On the surface, the MOM estimator might seem
more appealing versus a one-step M estimator, or
trimmed means in general, and the 20% trimmed
mean in particular. MOM is flexible in terms of how
many observations are discarded as outliers, it reduces
to using the usual mean when no outliers are found, it
can handle a relatively large number of outliers, and it
allows different amounts of trimming in the left tail of
a distribution versus the right. And situations do arise
in which it has a small standard error compared with
other estimators that might be used. However, from a

broader perspective, choosing an estimator is a more
complicated issue.

First, consider the goal of choosing an estimator
based solely on the criterion that it has a relatively
small standard error. From a theoretical point of view,
the one-step M estimator has excellent properties. It
was designed to compete well with the mean when
sampling from a normal or light-tailed distribution,
and it competes well with the median when instead
sampling is from a heavy-tailed distribution. Like
MOM, it contains the possibility of no trimming, and
for various situations it offers a bit of an advantage
over MOM. An argument for using MOM or the one-
step M estimator is that they outperform a 20%
trimmed mean in situations in which outliers are very
common. That is, if more than 20% of the largest
values are outliers, a 20% trimmed mean might have
a relatively large standard error compared with a one-
step M estimator or MOM.

However, consider the more general goal of choos-
ing a single measure of location for routine use when
testing hypotheses based on multiple criteria. If simul-
taneously we want to achieve high power, accurate
probability coverage (i.e., confidence intervals are ac-
curate), relatively low standard errors, a negligible
amount of bias, and good control over the probability
of a Type I error, it currently seems that a percentile
bootstrap method with a 20% trimmed mean is a good
choice. Another approach, not described here, con-
sists of heteroscedastic methods based on 20%
trimmed means that are not based on some bootstrap
technique (see Wu, 2002, for results when using ac-
tual data). These methods are based on extensions of
heteroscedastic techniques for means, such as the
methods in Welch (1938, 1951) or Johansen (1980;
see Keselman et al., 2002).

We hasten to add that we suggest flexibility over
rigid adherence to one approach or even one measure
of location. Different methods (including rank-based
techniques and the shift function) are sensitive to dif-
ferent features of the data. Depending on the specific
research question, these methods might add perspec-
tives that help us develop a more informed under-
standing of how the groups differ and by how much.
In some situations, multiple methods might be needed
to get a sufficiently detailed understanding of how
groups differ. Moreover, the reality is that situations
can arise in which something other than a 20%
trimmed mean is preferable. There is, of course, the
issue of controlling the probability of a Type I error
when multiple methods are applied. If many methods
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are used to compare groups, and there is some indi-
cation that groups differ in a particular manner, it
might be necessary to repeat a study with the goal of
determining whether the apparent difference can be
substantiated. As is evident, repeating a study can be
time-consuming and expensive, but this seems pref-
erable to routinely missing an important difference
because of the statistical method used.

One potential approach to the choice of method
would be to identify diagnostic criteria that can in-
form the choice of a measure of location, or some
hypothesis-testing method, prior to testing any hy-
potheses. That is, some type of preliminary analysis is
performed with the goal of deciding which method
should be used to compare groups. For example, one
could estimate skewness and kurtosis in an attempt to
justify using means over trimmed means or MOM.
However, the estimates of these quantities tend to
have much larger standard errors than the mean and
variance, they are highly sensitive to slight changes in
a distribution, and they are particularly affected by
outliers. Consequently, the expectation is that they
perform poorly as a diagnostic tool, and currently it
seems that this approach does not have practical
merit. We have considered many other diagnostic
strategies, all of which have proven to be rather un-
satisfactory.

Conclusion

Many issues and techniques have not been de-
scribed, but hopefully we have conveyed the idea that
we now have a vast array of tools for substantially
increasing power in a wide range of commonly oc-
curring situations. Moreover, modern methods help
improve our understanding of how groups compare,
as well as how much they differ, and the precision of
our estimates can be assessed much more accurately
than ever before.

Modern methods are not designed to test hypoth-
eses about means except in situations in which per-
fectly symmetrical distributions are being compared.
We outlined how population trimmed means are de-
fined, a more technical discussion of this issue can be
found in Huber (1981) or Staudte and Sheather
(1990), and formal definitions of population values
for MOM and one-step M estimators are available as
well. This is one reason why different methods can
lead to different results.

We close with seven summary observations that we
believe are of value to researchers.

1. We encourage researchers to be cautious when
interpreting nonsignificant results in cases in
which group differences are expected. Failing to
reject the null hypothesis might be because the
null hypothesis is true, but it may occur because
of poor experimental design or lack of statistical
power. Traditional statistical methods may have
low statistical power because, in many cases,
they are relatively insensitive to group differ-
ences.

2. Conventional methods generally offer at most a
small advantage in statistical power over mod-
ern methods when standard assumptions are ap-
proximately true. This is because modern meth-
ods are designed to perform nearly as well under
these circumstances.

3. As we move toward situations in which groups
differ in terms of variances, or skewness, or
sampling is from heavy-tailed distributions with
many outliers, at some point conventional meth-
ods for means break down whereas modern
methods continue to perform well in terms of
probability coverage and power. The only
known way of determining whether the choice
between modern and conventional methods
makes a difference is to try both.

4. If heteroscedastic methods for means are used,
problems with low power, poor control over the
probability of a Type I error, and bias will be-
come negligible if the sample size is sufficiently
large. However, it is unknown how large the
sample size must be. When dealing with skewed
distributions, regardless of how large the sample
size happens to be, a criticism is that the mean
can lie in the tails of a distribution and be rather
atypical (Staudte & Sheather, 1990).

5. Even if a plot of the data suggests that it has a
nearly symmetrical distribution, low power can
result when one is using tests of means due to
outliers or heteroscedasticity.

6. The 20% trimmed mean is likely to perform
well relative to other choices. However, there
are cases in which exceptions will occur (see
Keselman et al., 2002). For example, a one-step
M estimator or MOM can handle situations in
which the proportion of outliers in one of the
tails of the data happens to exceed 20%.
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7. At some level, no single method can be expected
to compete well in all possible situations that
might be encountered simply because different
methods are sensitive to different features of the
data. However, modern methods have much to
offer because they perform well in a larger set of
situations than conventional techniques.
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Appendix

Analysis of Variance Software

Three software packages can be used to apply modern
analysis of variance (ANOVA) methods: R, S-PLUS, and
SAS. The software R and S-PLUS are used in nearly the
same manner, but R is a freeware variant of S-PLUS.

Information about S-PLUS is available at http://
www.insightful.com. The R freeware can be downloaded
from http://www.R-project.org.

When one is using S-PLUS, the methods outlined in this
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article can be applied by downloading the files allfunvl and
allfun2 from www-rcf.usc.edu/∼rwilcox/ using the Save
As command. Complete details about these functions can be
found in Wilcox (2003). On some systems, when the file
allfunv1, for example, is downloaded, it is stored in a file
called allfunv1.txt. On other systems, the file might be
stored in allfunv1.html. Store these files in the directory
being used by S-PLUS. The directory being used should be
indicated at the top of the screen when S-PLUS is running
on a PC. On some machines this directory is

Programs Files\sp2000\users\default.

Next, run the source command on both files. Thus, for the
first file, use

source(“allfunvl”).

Then all of the S-PLUS functions in this file are added to
your version of S-PLUS until they are removed. Descrip-
tions of how to use these functions can be found in Wilcox
(2003).

The free software R comes with a manual that can be
accessed by clicking on help once R is running. To apply the
modern methods described here and in Wilcox (2003),
download the files Rallfunv1 and Rallfunv2 from http://
www-rcf.usc.edu/∼rwilcox/ and store them in the directory
being used by R. On Rand R. Wilcox’s PC, this directory is
Programs Files/R/rw1041. To incorporate the functions in
these files into R, again use the source command. Thus,
the command source(“Rallfunv1”) adds all of the
functions in the file Rallfunv1, and they remain in R until
they are removed with the rm command. S-PLUS and R
commands are nearly identical, but because of slight differ-
ences, separate files or the R functions were created. Nearly
all of the S-PLUS functions in Wilcox (2003) are used in

exactly the same manner as when using R. The only known
exceptions occur when one is creating certain three-
dimensional plots or when using certain multivariate meth-
ods. In these cases, R will produce an error saying that some
function (such as cov.mve or interp) does not exist. To
correct this, click on packages, and then click on lqs as well
as akima. Then use the commands

library(lqs)
library(akima).

Both R and S-PLUS are relatively easy to use. For ex-
ample, if the data for four groups are stored in the variable
dat (in either list mode or in a matrix), the command
lincon(dat) will perform all pairwise comparisons
among the groups based on 20% trimmed means and control
the familywise error rate. The command lincon(dat,
tr=0) performs comparisons of means instead, so the op-
tional argument tr indicates how much trimming is to be
used and defaults to 20% if not specified.

SAS/IML (Version 8) software for both completely ran-
domized and correlated groups design using both conven-
tional and robust estimators is available from H. J. Ke-
selman at http://www.umanitoba.ca/faculties/arts/
psychology/. For detailed illustrations on how to use this
SAS software, see Keselman, Wilcox, and Lix (in press).
Both omnibus hypotheses and linear contrasts can be tested,
the amount of trimming can be adjusted, and bootstrap tech-
niques are available as well. (Currently, some of the R and
S-PLUS functions can perform analyses that have not yet
been written in SAS.)
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