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Impact of different conditions on accuracy
of five rules for principal components retention
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Polemics about criteria for nontrivial principal components are still present in the 
literature. Finding of a lot of papers, is that the most frequently used Guttman Kaiser’s 
criterion has very poor performance. In the last three years some new criteria were proposed. 
In this Monte Carlo experiment we aimed to investigate the impact that sample size, number 
of analyzed variables, number of supposed factors and proportion of error variance have 
on the accuracy of analyzed criteria for principal components retention. We compared the 
following criteria: Bartlett’s χ2 test, Horn’s Parallel Analysis, Guttman-Kaiser’s eigenvalue 
over one, Velicer’s MAP and CHull originally proposed by Ceulemans & Kiers. Factors 
were systematically combined resulting in 690 different combinations. A total of 138,000 
simulations were performed. Novelty in this research is systematic variation of the error 
variance. Performed simulations showed that, in favorable research conditions, all analyzed 
criteria work properly. Bartlett’s and Horns criterion expressed the robustness in most of 
analyzed situations. Velicer’s MAP had the best accuracy in situations with small number of 
subjects and high number of variables. Results confirm earlier findings of Guttman-Kaiser’s 
criterion having the worse performance.
Key words: Principal component analysis, Criterion for extraction, Factor retention

Exploratory factor analysis (EFA) is de facto psychological method, not 
just because of its origin, but because it is among the most popular methods 
in psychology. The idea of identification of the structures underlying measured 
variables is very close to everyday psychological problems in which phenomena 
of interest cannot be measured directly, but have to be derived from the direct 
measures of behavior. Principal components analysis (PCA), in a broader sense 
one of EFA techniques for factor extraction, is the mostly used one. Reviews 
of its usage in psychological journals (Conway & Huffcutt, 2003; Fabrigar, 
Wegener, MacCallum, & Strahan, 1999; Ford, MacCallum, & Tait, 1986) 
show that the popularity of EFA and PCA, in particular, still holds. After the 
misconceptions that exploratory is subordinated to confirmatory analysis have 
been rejected (for example Tukey, 1980; Velicer & Jackson, 1990), the main 
critique is formed around insufficient preciseness and objectiveness as results 
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are highly influenced by the researcher’s choices. The one of the key questions 
in EFA is how many factors/components are needed in order to successfully 
represent the data in the space with smaller number of dimensions. Some authors 
call these rules determining the number of components stopping rules. The 
process for factor extraction could be seen as iterative procedure of components 
extraction, as originally proposed by Hotelling (see in Mulaik, 1971), which is 
stopped when the optimal number of factors is extracted. As there are many of 
these stopping rules it is usually up to researcher to select the one which result 
is closest to researcher’s theoretical model and expectations based on it, and 
as well as interpretability of that factor solution. Determination of correct i.e. 
appropriate number of factors has strong theoretical implications in psychology, 
especially in the fields of personality and cognitive abilities.

In the classical factor analysis true scores are postulated as uncorrelated 
to unique scores. Moreover, the unique scores are not inter-correlated among 
themselves. In other words, true scores are responsible for correlations between 
variables, while unique scores are only responsible for the explanation of 
variance of variables which remained after the partialization of the true scores. 
These classical postulates do not lead to unique solution of scores, implicating 
that true and unique scores can be only estimated.

In order to make the model solvable in the terms of linear algebra 
Guttman in his image theory relaxed the classical postulates, allowing: a) non-
zero correlations among true scores of one variable (image scores) and unique 
scores (anti image) of the other measured variables, and b) non-zero correlations 
among unique scores of different variables (Guttman, 1953). By this relaxation 
the model leads to solvable unique solution of two parts of each variable. The 
less desirable consequence of the model was that all random error variables 
correlate in finite samples.

METHODS FOR DETECTION OF NONTRIVIAL COMPONENTS

In more than hundred years long history of PCA used as EFA technique, a 
long list of different stopping rules was suggested. Only the most popular rules 
will be presented here in chronological order.

Bartlett’s χ2 test
One of the first presented stopping rules, from 1950, was the statistical test 

developed by Bartlett (Bartlett, 1950). The idea was to detect when the variance 
of remaining components do not differ statistically. After all true components are 
extracted, only error components remain. These error components have variances 
that only fluctuate by chance. To detect this situation, Bartlett basically computed 
the ratio of geometric and arithmetic mean of variances i.e. eigenvalues of the 
remaining components. If all eigenvalues are the same, these means are equal 
and the ratio has value that is close to one, while its logarithm is close to zero 
(Horn & Engstrom, 1979). If at least one1 eigenvalue would be substantially 

1 As usual eigenvalues are sorted in descending order, where the first one is the most important.
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greater, that would make greater impact on the arithmetic mean than on the 
geometric mean, and value of logarithm will jump up. Multiplication of this 
logarithm with a constant defined by the number of observations, variables and 
the number of already significant components would result with χ2 distributed 
statistic.

By using notation presented in Mulaik (1971), and if we designate with 
m the number of directly measured variables, with n the sample size, with λi the 
eigenvalues obtained from correlation matrix of m measured variables, sorted in 
non-ascending order and with p (p = 0, ..., m) the number of components already 
declared as significantly different from the others then:

,  and 

Resulting χ2 statistic will have (m – p – 1) (m – p + 2)/2 degrees of freedom. 
In the first iteration (p = 0) tested hypothesis is in fact that all population 
eigenvalues are equal. After rejecting this hypothesis one would then, in the 
next iteration, test the remaining m – 1 eigenvalues. The first test with non-
significant outcome would mean that all of the remaining eigenvalues are just 
error variances, and that the optimal number of components has been detected. 
According to some authors, Bartlett’s χ2 test was often found to overestimate 
the number of nontrivial components, especially with conventional significance 
levels at either 0.05 or 0.01 (Gorsuch, 1973; Horn & Engstrom, 1979; Hubbard 
& Allen, 1987). Beside, Gorsuch (1973) noticed that this trend increases with the 
sample size, making the smaller differences become significant in cases of larger 
samples. It is important to notice that this test is possible to detect structures 
with no factors at all, when the test is performed for p = 0.

Guttman-Kaiser’s rule
Describing the conditions necessary for common-factor analysis, Guttman 

noted that after the removal of unique variances, in a way that resulting matrix is 
still Gramian, its minimal rank must be the number of eigenvalues greater than 
one. At the same time, this number is also the minimum number of common 
factors which should be postulated as truly existing ones (Guttman, 1954). Later, 
Kaiser noted that in order to have a positive reliability a component must have 
an eigenvalue greater than one. Another interpretation of this criterion could 
be that there is no much sense to declare something as component if it carries 
less information then the original (standardized) variable. And this conclusion 
is something that almost everyone will agree upon, but the other way around – 
proclaiming all components with eigenvalues greater than one to be important, 
is questionable. It is well known that this rule overestimates the number of 
components (see for example Lorenzo-Seva, Timmerman, & Kieres, 2011), which 
is probably a consequence of treating the correlation matrix obtained on the 
sample as a population parameter and not as its estimate. Nevertheless this rule 
is maybe the mostly used one (Fabrigar et al., 1999; Conway & Huffcutt, 2003).

Q =
∏

i=p+1

m

λi

(∑=p+(( 1

m λi

m− p)())m)) − p) K = n− 1− (2 m+5)
6

− 2p
3 χ 2 = − K log(Q)
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Horn’s Parallel Analysis Test
This test is based on the comparison of eigenvalues obtained from the 

analyzed matrix and eigenvalues from randomly generated data. All the 
eigenvalues that are greater from corresponding eigenvalues obtained on 
random data are designated as important and retained (Horn, 1965). In order 
to apply this criterion eigenvalues, from the correlation matrix obtained from 
random data matrix with the same size as the original data matrix, should be 
calculated. In original paper Horn is simulating just one random matrix, but 
trough the time method evolved into calculation of larger set of random matrices 
and complementary eigenvalues. From these eigenvalue distributions for each 
k-th eigenvalue, reference value is calculated for comparison with the tested 
eigenvalue.

Finding of Zwick & Velicer (1986) that PA overestimates the number of 
components actualized the question of choice of the critical value obtained on 
random data.

In order to make criteria more conservative Buja & Eyuboglu (1992) 
suggested increase of the threshold to 95th percentile. Press-Neto et al. (2005) 
found that in some cases originally proposed limit has better performances, but 
popularity of 95th percentile continued (Lorenzo-Seva et al., 2011). On the end 
some findings (Raîche, Walls, Magis, Riopel, & Blais, 2013) suggested that it 
is not the increase but the decrease of original threshold, to 5th percentile, that is 
improving performance of this criterion.

Cattell’s Scree Test
This test is based on the graph i.e. scree plot, of eigenvalues on the ordinate 

and their ordinal values on the abscissa (Cattell, 1966). The idea is that the last 
eigenvalues, that will be discarded, are just fluctuation of error variance, and 
therefore make the linear trend. This trend in a similar fashion to Horn’s algorithm 
can be used to detect the first eigenvalue that is above this threshold line. The 
major critique of this test is on its subjectivity, taking into the account that elbow 
where curve diverges from the linear trend is not something that is always easily 
detectable (Horn & Engstrom, 1979). Horn and Engstrom (1979) noted the 
resemblance of Bartlett’s testing, that all remaining eigenvalues are the same, and 
Cattell’s search of the point that diverges from the linear trend formed from error 
eigenvalues, concluding that these two test are based on the similar idea. In the 
same time this is also underlying idea of Horn’s criteria. It is just that Horn is 
making the reference values from random data (which do make linear trend also), 
or by modeling the data just with the error variance, while Cattell is constructing 
this trend from the error variances that can be found in the data itself.

Velicer’s Minimum Average Partial Test
Inter-correlation matrix could be decomposed like,

R = ∑
i=1

m

xi xt λi
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where λi is eigenvalue and xi is corresponding eigenvector of inter-
correlation matrix R. In that case estimation of this matrix Rp based on the last 
m – p, (p = 0, ..., m) eigenvalues and eigenvectors is

where

and

In other words Rp is matrix of partial correlations among variables when 
the effect of the first p components is partialized. In this notation Velicer’s 
criteria can be formulated as the number p for which average of squared off 
diagonal elements of matrix Rp is minimal (Velicer, 1976). Rationale for this is 
that after all true components are partialized, inter-correlations between variables 
would be explained, and resulting matrix of partial correlations, which will in 
that case represent just inter-correlations of error variables, will be in statistical 
sense the identity matrix. Continuing to partialize remaining, error components, 
would only increase partial correlations, as these off diagonal values are now the 
sum of smaller number of error/random components. As Bartlett’s test, this test 
is also capable to detect structures with no important factors.

CHull method
In the essence, this method comes like numerical operationalization of the 

Cattell’s scree test. Originally it was suggested for the detection of the optimal 
number of components in the three way data matrices (Ceulemans & Kiers, 
2006), but lately it has been popularized for the usage in common-factor analysis 
(Lorenzo-Seva et al., 2011) and in principal components analysis (Wilderjans, 
Ceulemans, & Meers, 2013). Basic idea is the same as in Cattell’s scree, to 
identify a point on the graph where the curve makes the elbow.

The graph in general represents the relation of the number of free 
parameters (fpi) in evaluated model and some measure of the goodness of fit (fi) 
for that model. In that case the algorithm could be described trough following 
steps:

– sort the points by the free parameters value (fpi)
– exclude all (fpi, fi) points where fpj <fpi and in the same time fj> fi, i.e. where 

goodness of fit measure (fi) is not in the same order (ascending/descending) 
as the number of free parameters (fpi)

– check all triplets of adjacent points and exclude all middle points that are 
located on or below the line that is connecting its neighboring points i.e. if

R p = D p
− 1 C p D p

− 1

C p = ∑
i=p

m

xi xt λi

D p = diag (C(( p)1)) /2
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*

– find the point (fpi, fi) where the function

reaches the maximum. At that point the elbow of the curve is located and 
the optimal model is detected.

The problem with this criterion emerges in the cases of the first and the 
last eigenvalue, with former naturally being of much greater importance. As the 
function is not defined on endpoints, it makes impossible that these points are 
going to be designated as optimal. In common-factor analysis the null model can 
be used for this purpose (Lorenzo-Seva et al., 2011), as it is simpler it allows 
evaluation of model with one common factor. In case of PCA as Wilderjans et 
al. (2013) suggested that the fit function could be the proportion of explained 
variance by extracted components i.e. the cumulative sum of eigenvalues. By 
this application of CHull, the formulation of the criterion can be simplified to 
the search for the maximum of ratios of succeeding eigenvalues, from second 
eigenvalue onward.

In order to make solution with one component possible the same authors 
proposed that the null value should be defined as simple zero point, representing 
the case when none of components is extracted causing that none of the total 
variance is explained. Authors also made the notion that this is not the ideal 
solution as the addition of this “virtual” zero point overestimates the function 
for the first component. Rationale for this could be that the error variance has 
smaller impact on the size of the first eigenvalue then on the second. The same 
logic should hold for all succeeding pairs of eigenvalues, which would on the 
end result with tendency of this criterion to underestimate the number of true 
components.

We would like to note that this criterion, in this formulation, is similar to 
Rnd-Ratio criterion (Peres-Neto et al., 2005), just that in their version the ratio 
was bootstrapped and its significance was estimated.

AIM OF THE STUDY

Aim of this paper is to explore the impact of different research conditions 
on accuracy of five rules for component retention. The criteria that have been 
compared are: Guttman-Kaiser’s rule of eigenvalue over one, Bartlett’s test, 
Horn’s parallel analysis, Velicer’s MAP and CHull method.

* Even that usually convex function is defined as the function where for any t ∈ [0, 1]  
condition f(t x1 + (1-t)x2) ≤ t f(x1) + (1-t) f(x2)  holds true, convexity here is defined like 
in cited paper

f i ≤ f i− 1+( fp(( i− fpi− 1)
f i+ 1− f i− 1

fpi+1− fpi− 1



Aleksandar Zorić and Goran Opačić 337

The goal was to compare accuracy of those five rules for different number 
of postulated components, different sample sizes and number of variables, and 
also different proportions of error variance.

SIMULATION

In order to evaluate different stopping rules simulated data were generated 
with predefined structures. First, structure matrix is defined for the given 
number of important components (k) and the given number of variables (m) 
only allowing the structures where each factor has high loadings with at least 
three variables. The actual number of high loadings of variables per factor was 
defined by random integer from 3 to m/k, with the exception for the last factor 
where high loadings were designated for all remaining variables. For example, 
if the number of variables was 12, and the specified number of factors 3, the 
distribution of variables among factors could be 4,4,4 as well as 3,3,6.

All coefficients in structure matrix (F) were filled with random numbers 
uniformly distributed from 0 to 0.2, and after that, on all coefficients for all 
variables with high loadings, uniformly distributed random number from 0 to 
0.7 was added.

After this the matrix of normally distributed random numbers with k 
columns and n rows (Zr) that represented the matrix of factor scores, was 
multiplied with the structure matrix in order to obtain the matrix of true scores 
of variables.

Zt = ZrF
t

These true scores were standardized to have the variances of (1-e) where e 
is the specified proportion of the error in the data. After this the matrix of error 
scores (Ze) was summed with this true scores matrix in order to obtain the data 
matrix (Z) used for evaluation of different criteria. This error n by m matrix 
(Ze) was also filled with random numbers from normal distribution and columns 
scores were standardized to have the variance of e.

Z = Zt + Ze

This method for error integration into data is not unknown (Josse 
& Husson, 2012), but we have to note that it is not popular as the Tucker’s 
method with mayor and minor components and unique error variances (Tucker, 
Koopman, & Linn, 1969).

After construction of the data matrix the correlation matrix and its 
eigenvalues were calculated and selected stopping criteria were applied.

The simulation was done in R software version 2.15.2 (R Core Team, 2013) 
and the source code of the procedure can be found on www.kal.rs/simulation.

The choice of the number of variables, sample size and percent of error 
variance was based on a few meta-analytic studies of EFA practices in psychology 
and social sciences (Fabrigar et al., 1999; Conway & Huffcutt, 2003; Cangelosi 
& Goriely, 2007; Costello & Osborne, 2005).
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Tested number of postulated factors (k) was limited to values of 1, 2, 3, 
5, 8 and 10, and from these values and the rule of at least three variables with 
high loading per factor, number of variables (m) was derived to be: 9, 15, 22, 
35 and 40. Following the same rule, some numbers of components became 
inapplicable for the some number of variables. For example, for numbers of 35 
and 40 variables all combinations of number of components were tested, but for 
15 variables only situations with 1, 2, 3 and 5 components were applicable. This 
resulted with total of 23 different combinations.

Sample size (n) was limited to values of 50, 100, 200, 300 and 600, where 
50 and 100 were representing fairly small sample sizes and 600 the large ones. 
These small sample sizes, especially in situations with large number of variables 
35 and 40 are not conditions that are commonly advisable for application of 
factor analysis, but in clinical psychology, for example, as well as in other 
scientific fields, these sample sizes are not uncommon, so these situations were 
as well included in simulation.

The percentage of error variance (err) was limited to 30, 40, 50, 60, 70 
and 80.

Inclusion of error variance in the model makes the model of the data 
much more realistic, as some amount of error variance is inevitably part of the 
measurement. In similar Monte Carlo studies, the amount of the error was almost 
never directly systematically controlled as a factor that is producing the impact 
on the size of eigenvalues. Underlining premise based on classical measurement 
model was that correlation between error and true scores should be zero, as 
well as correlations between errors of different variables. Guttmann (1953) 
demonstrated that the second hypothesis is true only if measurement was done 
on the universe of variables, but because of proposed method for decomposition 
of true and error variances, he was forced to keep the first premise. We can 
easily agree that correlation between true and error scores should be zero on 
infinite sample, but sample sizes in psychological researches can hardly be 
approximated with this model. Cumulatively, those statistically insignificant 
correlations could build up the size of eigenvalues. After all, on this assumption 
Horn’s parallel criterion is based.

By the suggested model for integration of error variance in the data that 
was applied in this paper, correlations among all true and error scores as well as 
inter-correlations among error scores were allowed.

In earlier papers (Jackson, 1993; Peres-Neto et al., 2005; Zwick & Velicer, 
1986; Zwick & Velicer, 1982) error factors were introduced by minor loadings 
or by addition of unique variance on diagonal of reproduced correlation matrix 
in order to achieve standardized variance. Much more realistic approach was 
suggested by Tucker et al. (1969). Their model consist of three parts: common-
factors (major factors), minor factors and unique factors, where minor and 



Aleksandar Zorić and Goran Opačić 339

unique factors represent the error in the model. But that model didn’t allowed 
correlations between major (true) components and error components. The model 
suggested by Hong (1999) resolved that problem which existed in all preceding 
simulations (Jackson, 1993; Peres-Neto et al., 2005; Zwick & Velicer, 1986; 
Zwick & Velicer, 1982) allowing the modeling of these inter-correlations. Hong’s 
algorithm as not being based on score matrices (Zr, Zt and Ze), is insensitive on 
the sample size.

So for 23 different plausible combinations of number of variables to 
number of components, all five sample sizes and all six error levels were tested, 
which resulted in 690 different combinations. For each combination process 
of data generation was repeated 200 times. On the end 138,000 different data 
matrices were analyzed.

Bartlett’s χ2 test was applied with two standard significance levels 
0.05 (BAR5) and 0.01 (BAR1). In addition test was applied in two similar 
versions. The first, which is something like the standard interpretation of the 
test, stops the extraction after the first non-significant component is detected. 
The second version aims to find the last significant component, not taking into 
account if there were one or more non significant outcomes before. These two 
versions produced almost the same results, even the later was something better 
performing, and only its results are presented in the paper.

Standard Guttman-Kaiser rule (GK) of eigenvalue larger than one was the 
third option tested.

In the case of the parallel analysis comparison of different critical values 
was performed. The tested values were 50th (PA50) and 95th (PA95) percentiles 
of eigenvalues obtained from random data. The 5th percentile (Raîche et al, 2013) 
was also tested, but as its performance, in overall comparison, was worse than of 
PA50 its results are not presented.

Minimum average partial correlation (MAP) test was also included in this 
comparison.

On the end two versions of convex hull criterion were applied, one version 
(CHull.CFI) on a problem of number of factors in common-factor analysis where 
the value of comparative fit index (Bentler, 1990) of a model is plotted against 
its degrees of freedom (Lorenzo-Seva et al., 2011), and the other suggested for 
PCA (Wilderjans et al., 2013) as a plot of cumulative values of eigenvalues 
and their ordinal number in situation with (CHull.PCA0) and without (CHull.
PCA1) inclusion of zero point. On both methods that were based on PCA upper 
limit of possible solutions was limited to m/2 i.e. half of the number of variables 
analyzed.

Classical eigenvalue decomposition was performed in all cases of all 
criteria, except for CHull based on CFI where ML common-factor model was 
used. In this case appropriate procedure from R package “psych” was applied 
(Rawelle, 2013).
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RESULTS AND DISCUSSION

As we can see from Table 1 and 2 and Figure 1 the obtained results 
are mostly in line with the findings in literature. As the overall comparison is 
influenced by the selected sets of parameters, and as there is difference among 
criteria under different parameter values, the straightforward estimation of 
criteria performances is not possible.

Table 1. Percent of correct detections of
number of components by different criteria

BAR5 BAR1 GK PA 
50 PA 95 MAP CHull.

CFI
CHull.
PCA0

CHull.
PCA1

Count 
in 000

n

50 50.5 48.4 31.6 55.2 51.3 57.4 43.2 45.7 42.7 27.6
100 68.0 64.0 47.4 69.3 63.3 67.9 52.9 52.1 53.1 27.6
200 80.6 78.3 62.6 79.9 75.4 70.5 64.4 57.6 60.9 27.6
300 86.1 84.7 69.7 85.8 82.2 71.2 71.1 61.2 64.8 27.6
600 93.0 92.6 81.5 93.3 91.2 71.5 80.6 65.5 69.1 27.6

m

9 87.2 85.8 85.7 94.2 90.1 67.8 91.4 86.2 61.5 18
15 82.4 80.4 73.0 87.6 82.6 67.2 76.5 68.9 64.5 24
22 82.4 80.0 59.8 87.1 82.5 74.3 67.3 63.3 62.2 24
35 68.5 66.0 48.6 64.6 61.0 64.1 49.3 42.5 53.7 36
40 68.0 66.3 44.6 65.8 62.5 67.1 48.4 42.5 53.9 36

k

1 96.0 98.5 57.1 98.0 99.9 98.1 99.8 100.0 0.0 30
2 87.7 86.9 59.6 94.8 93.7 80.4 70.3 68.7 97.7 30
3 78.3 75.2 62.4 87.7 81.3 64.8 62.4 57.3 81.0 30
5 63.6 58.9 60.2 65.5 54.7 48.9 45.1 33.6 67.3 24
8 47.7 42.1 51.9 33.2 26.6 41.0 24.8 12.6 46.7 12

10 40.0 34.9 53.6 16.7 12.4 31.3 21.5 3.8 40.5 12

err

30 93.7 94.9 97.4 86.5 83.9 97.5 85.7 83.3 75.8 23
40 90.1 90.1 89.3 84.3 81.3 94.4 77.6 70.6 71.6 23
50 85.0 83.3 75.5 81.1 77.4 79.0 67.9 59.4 65.3 23
60 75.9 72.9 52.9 76.7 72.6 56.1 57.2 49.7 56.2 23
70 63.2 59.0 27.0 71.1 65.6 44.8 47.9 41.4 45.6 23
80 45.9 41.3 9.2 60.5 55.2 34.3 38.2 34.1 34.1 23

n/m

<2 39.0 39.8 17.6 41.1 40.6 50.1 28.5 32.4 35.6 14.4

2 – 4.9 62.4 57.5 38.3 63.1 57.2 67.4 45.2 46.7 49.9 28.8
5 – 9.9 77.4 74.6 57.6 76.0 70.6 70.1 59.9 52.3 59.5 42

10 – 19.9 88.5 87.3 73.5 90.7 86.8 71.2 75.7 62.2 66.6 27.6
> 20 94.7 94.7 90.4 98.5 96.7 70.2 91.1 81.6 68.8 25.2

total 75.6 73.6 58.6 76.7 72.7 67.7 62.4 56.4 58.1 138
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Table 2. Average deviation from correct number of components
in situations when criteria produced incorrect number

 of components by different criteria

BAR5 BAR1 GK PA 50 PA 95 MAP CHull.
CFI

CHull.
PCA0

CHull.
PCA1

n

50 -1.00 -2.44 4.51 -1.82 -3.17 -2.74 -3.69 -4.11 0.71
100 -2.18 -2.66 4.48 -2.37 -2.87 -3.33 -4.24 -4.43 0.27
200 -1.90 -2.34 4.27 -2.06 -2.42 -3.57 -4.48 -4.65 0.28
300 -1.60 -2.09 3.92 -1.87 -2.17 -3.68 -4.64 -4.78 0.56
600 -0.85 -1.59 3.25 -1.57 -1.78 -3.71 -4.80 -4.88 0.91

m

9 -0.92 -1.51 1.26 -0.19 -1.26 -2.05 -0.67 -1.41 1.57
15 -1.39 -1.97 1.93 -0.84 -1.75 -2.70 -1.58 -2.51 1.79
22 -1.20 -1.78 3.10 -0.89 -1.58 -2.09 -2.29 -2.58 2.02
35 -2.19 -2.96 4.62 -2.48 -3.27 -4.45 -5.21 -5.50 -0.52
40 -1.12 -2.43 5.63 -2.21 -3.04 -3.88 -5.21 -5.48 -0.28

k

1 3.83 1.56 4.84 1.55 0.90 1.03 1.87 1.75 3.99
2 0.52 -0.79 4.65 0.30 -0.98 -0.93 -0.88 -0.99 3.40
3 -0.55 -1.31 4.45 -0.45 -1.19 -1.69 -1.68 -1.86 -0.60
5 -1.46 -2.10 4.03 -1.21 -1.81 -2.90 -3.60 -3.91 -1.84
8 -2.45 -3.12 3.82 -2.41 -3.17 -4.70 -6.88 -6.97 -4.69

10 -3.55 -4.20 2.53 -3.47 -4.47 -7.00 -8.86 -8.98 -6.04

err

30 2.45 -0.51 -0.40 -2.20 -2.35 0.42 -4.72 -6.09 3.15
40 0.75 -1.12 1.68 -2.28 -2.46 -1.27 -4.68 -5.51 2.09
50 -0.28 -1.66 2.71 -2.33 -2.54 -3.22 -4.69 -4.94 0.98
60 -1.10 -2.04 3.34 -2.31 -2.67 -3.25 -4.52 -4.48 0.02
70 -1.90 -2.52 4.21 -2.19 -2.85 -3.47 -4.17 -4.13 -0.44
80 -2.64 -3.07 5.63 -1.33 -3.04 -3.67 -3.60 -3.81 -0.18

n/m

<2 -0.71 -2.72 5.60 -2.39 -4.00 -3.17 -4.85 -5.16 0.18

2 – 4.9 -2.10 -2.60 4.36 -2.01 -2.72 -3.18 -3.80 -4.16 0.39
5 – 9.9 -1.92 -2.30 4.20 -1.85 -2.29 -3.93 -4.59 -4.92 0.00

10 – 19.9 -1.07 -1.64 2.91 -1.38 -1.65 -3.68 -4.18 -4.63 0.83
> 20 -0.14 -1.18 1.49 -1.00 -1.25 -2.39 -2.00 -2.46 2.05

total -1.51 -2.40 4.26 -2.00 -2.73 -3.35 -4.24 -4.53 0.54
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Figure 1. Proportions of correct detections for selected criteria, for three different 
sample sizes (n), and three different numbers of variables (m), and sixe tested levels 
of error variances (err)

Introduction of systematic variation of amount of error variance also 
provided useful information. The first conclusion is that all criteria, except 
HULL PCA, work properly in favorable circumstances like high number of 
subjects per variable and low level of the error in a system. Inaccuracy of all 
criteria starts to be evident in situations with small n by m ratio, high percent 
of error variance and high number of supposed factors. But some differences 
between them also exist.

Results of the accuracy of the Bartlett’s χ2 test are not in concordance 
with authors who have found that this test overestimates the number of factors 
especially on large samples (Gorsuch, 1973; Horn & Engstrom, 1979; Hubbard 
& Allen, 1987; Henson & Roberts, 2006; Raîche et al., 2013). Velicer, Eaton, 
& Fava (2000) even do not recommend its usage. Our results are much more in 
line with Ferr é, (1995) who have found that accuracy of Bartlett test increase 
with sample size.

Results in Table 1 suggest that percent of correct detections of number of 
components for this criterion is the same as the one obtained by using PA. In the 
same time, in situations with wrong estimations, average error for this criterion 
is smaller than average error acquired by PA.
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Our results imply that this method should be considered as the method 
of choice except in stations with extremely small samples (see Figure 1). This 
disagreement between our results and findings of the majority of other authors 
could be the consequence of the fact that mentioned authors did not used the 
original Barttlett’s formula (Barttlett, 1950) but instead some of its modifications 
(see Peres-Neto et al., 2005).

A lot of authors reported that Guttman-Kaiser’s criterion regularly 
overestimates the number of components (see for example Lorenzo-Seva at al., 
2011; Costello & Osborne, 2005; Josse & Husson, 2012; Raîche et al., 2013; 
Wilderjans et al., 2013). Despite this it is the mostly used rule in researches in 
social sciences. The reason for this probably lies in the fact that this criterion is 
the default criterion in most statistical package   s. In our simulation this was the 
only criterion that was overestimating, while all the others were underestimating 
the number of postulated factors. But the evaluation of this criterion is not that 
straightforward as it is accurate as much as other criteria in situations when n 
by m ratio is over 10 and when error variance is not above 50 percent. In other, 
non favorable, situations this criterion is the most sensitive one and very quickly 
loses its accuracy. When EFA is performed on test items, that often have very low 
reliability, sometimes even lower than .3, the GK criterion should be avoided.

Horn’s Parallel Test was in many studies considered as the most accurate 
(Franklin et al., 1995; Hayton, Allen, & Scarpello, 2004: Zwick & Velicer, 1986; 
Ledesma & Valero-Mora, 2007; Velicer et al., 2000). That was a good argument 
for its recommendation despite pretty inconvenient procedure for its application. 
In order to overcome alleged tendency of this criterion to overestimate number 
of components some authors (Zwick & Velicer, 1986; Buja & Eyuboglu, 
1992; Lorenzo-Seva et al., 2011) suggested increase of the cutoff value to 95th 
percentile of eigenvalue distribution. Other authors (Press-Neto et al., 2005) 
have found that usage of average eigenvalues obtained on random matrices 
could be more appropriate than usage of 95th percentile. Our findings are in line 
with this recommendation, as in our simulations in overall comparison median 
value outperformed the 95th percentile.

There are some new papers that suggest lowering of threshold value 
to 5th percentile (Raîche et al, 2013). In our study this low threshold level 
was performing better only in the situations with large sample sizes and 
low error levels, which can be also described as situations which make high 
correlations more possible. This finding is in line with Press-Neto et al. 
(2005). In overall comparison this threshold value under performs PA50.
Our findings suggest that PA50 criterion is the most accurate one when the 
number of subject is small, and the percent of error variance is reasonably high 
but the number of variables is rather small.

In situations with small sample size, large error variance and large number 
of variables the best criterion is Velicer’s MAP. Practically logic of MAP doesn’t 
include sample size but only number of variables and number of factors, so this 
result should not be unexpected. Estimation of average partial correlation, as a 
parameter that should be minimized, is much more stable if a system has more 
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variables. So in cases of almost square data matrices the MAP should be the 
preferred criteria.

CHull criterion, except in situations with the only one component, in 
overall comparison outperforms the other criteria. This criterion in the case of 
PCA can be simplified as location of the maximum of ratios between all pairs 
of consecutive eigenvalues (Wilderjans et al., 2013). And in that case at least 
theoretically it can correctly detect existence of only one component but in 
reality it is not the case. Inclusion of zero point underestimates the number of 
components making a strong affinity toward solution with only one important 
component. This could explain why on the first glance it looks like much worse 
than other criteria. In situations with more than one component, standard variant 
of CHull criterion based on cumulative eigenvalues (without zero point) is one of 
the most accurate. CHull based on CFI suggested by Lorenzo-Seva et al. (2011) 
wasn’t as accurate as authors claimed in their paper, but it should be noted that 
this version of CHull does not have a problem with detection of solutions with 
just one factor.

CONCLUSIONS

Our results partially confirm the results of earlier studies. Accuracy of all 
criteria decreases with decrease of sample size, and with increase of: number 
of variables, number of supposed factors and proportion of error variance.
There is no unambiguous answer which of analyzed criteria has the best 
performance. In favorable research conditions all criteria have good accuracy. 
We can recommend usage of Bartlett’s χ2 test and Horn Parallel Analysis test 
working properly in all conditions except in situations with small number of 
subjects and relatively high number of variables. In these situations, with small 
sample size and relatively high number of variables, we can recommend Velicer’s 
MAP criterion. Mostly used criterion Guttman-Kaiser’s is the most sensitive on 
increase of number of variables and increase of proportion of error variance.

Those practitioners that would like to apply recommended criteria (PA, 
MAP) can find the macros in SPSS and SAS in the article of O’Connor (2000).

By our knowledge this paper is the first one that systematically varied 
error variance. Besides, non-zero correlations between error scores of different 
variables, as well as non-zero correlations of error score and true scores were 
allowed. This fact makes our simulations much more realistic. Results strongly 
confirm our hypothesis that reliability of analyzed measures (proportion of error 
variance) has crucial role in determination of number of components. This effect 
could be neutralized only by increasing the sample size.

Main limitation of this paper emerges from the limited set of values that 
were varied trough simulations. This limitation is predominantly related to the 
number of variables, and components. So, we are not sure that trends observed 
in our analyses could be generalized on those situations with more than 100 or 
200 variables, and situations with more than 10 factors.
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Second limitation is related to the shape of distribution. We simulated data 
only from normal distribution, but it is not rare in psychological researches that 
authors applied EFA without proving that the distributions are normal.

It should be noted that even that we used one criterion that is applicable 
for common-factor model, our findings are strongly related just to situations that 
PCA is used for factor extraction.
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