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The purpose of this article is to reduce potential statistical barriers and open doors to canonical
correlation analysis (CCA) for applied behavioral scientists and personality researchers. CCA
was selected for discussion, as it represents the highest level of the general linear model (GLM)
and can be rather easily conceptualized as a method closely linked with the more widely under-
stood Pearson r correlation coefficient. An understanding of CCA can lead to a more global ap-
preciation of other univariate and multivariate methods in the GLM. We attempt to demonstrate
CCA with basic language, using technical terminology only when necessary for understanding
and use of the method. We present an entire example of a CCA analysis using SPSS (Version

11.0) with personality data.

Many applied behavioral researchers are not aware that there
is a general linear model (GLM) that governs most classical
univariate (e.g., analysis of variance [ANOVA], regression)
and multivariate (e.g., multivariate ANOVA [MANOVA],
descriptive discriminant analysis) statistical methods. Ac-
cordingly, many persons view these statistical methods as
separate entities rather than conceptualizing their distinct
similarities within the GLM. For example, because all classi-
cal parametric analyses are part of the GLM, all of these anal-
yses have certain things in common, including the facts that
they (a) are ultimately correlational in nature, (b) yield
r2-type effect sizes, (c) maximize shared variance between
variables or between sets of variables, and (d) apply weights
to observed variables to create synthetic (i.e., unobserved, la-
tent) variables that often become the focus of the analysis (cf.
Bagozzi, Fornell, & Larcker, 1981; Cohen, 1968; Henson,
2000; Knapp, 1978; Thompson, 1991).

Knowledge of the commonalities among statistical analy-
ses is in stark contrast to the often compartmentalized statis-
tical education that many graduate students and faculty have
received. Unfortunately, this compartmentalization can lead

to rigidity of thought concerning the methods as opposed to a
fluid understanding of their purpose and utility, thereby hin-
dering appropriate methodological applications in applied
psychological research. Indeed, at least partially because of
this educational paradigm, it not uncommon to see some
graduate students physically shudder at the thought of endur-
ing advanced methodological coursework. It should not be
surprising, then, to find some graduate students taking great
lengths to desperately avoid methodology curricula and, in
extreme cases, seeking psychotherapy to reduce the systemic
anxiety these courses seem to invoke!

Statistics anxiety notwithstanding, the GLM provides a
framework for understanding all classical analyses in terms
of the simple Pearson r correlation coefficient. We demon-
strate later, for example, the interpretation of a canonical cor-
relation analysis (CCA), which has as its foundation the
Pearson r correlation. The GLM can also be conceptualized
as a hierarchal family, with CCA serving as the parent analy-
sis. Contrary to the compartmentalized understanding of sta-
tistical methods held by many researchers, CCA subsumes
both univariate and multivariate methods as special cases
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(Fan, 1996, 1997; Henson, 2000; Thompson 2000). Actually,
structural equation modeling represents the highest level of
the GLM. However, structural equation modeling explicitly
includes measurement error as part of the analysis, whereas
other classical statistical procedures do not. Knowledge of
the inner workings of CCA can inform researchers regarding
the application of GLM concepts across analyses and exten-
sion of these concepts to vital multivariate methods (Fish,
1988).

In theory, CCA has been available to researchers since
Hotelling (1935, 1936) initially developed the method’s ana-
lytic framework. More recently, however, CCA has become
practically available due to the advent of statistical software
programs. Nevertheless, some researchers continue to use
univariate statistical analyses (i.e., one dependent variable),
such as multiple regression and ANOVA, to analyze data that
might better be analyzed using a multivariate technique (i.e.,
more than one dependent variable) such as CCA.

PURPOSE

The purpose of this article is to reduce potential statistical
barriers and open doors to CCA for applied behavioral scien-
tists and personality researchers. CCA was selected for dis-
cussion, as it represents the highest level of the GLM and can
be rather easily conceptualized as a method closely linked
with the more widely understood Pearson r correlation coef-
ficient. In addition, an understanding of CCA can lead to a
more global appreciation of other univariate and multivariate
methods in the GLM. We attempt to demonstrate CCA with
basic language, using technical terminology only when nec-
essary for understanding and use of the method. Readers in-
terested in more technical, theoretical discussions of CCA
are referred to Stevens (2002), Tabachnick and Fidell (1996),
and Thompson (1984). We present an entire example of a
CCA analysis using SPSS (Version 11.0) with personality as-
sessment data.

ADVANTAGES OF CCA (AND OTHER
MULTIVARIATE METHODS)

There are several advantages to CCA, many of which are due
to the fact that CCA is a multivariate technique. First,
multivariate techniques such as CCA limit the probability of
committing Type I error anywhere within the study (Thomp-
son, 1991). Risk of Type I error within a study is sometimes
referred to as “experimentwise error” and relates to the likeli-
hood of finding a statistically significant result when one
should not have (e.g., finding a difference, effect, or relation-
ship when it really does not exist in the population). In-
creased risk of this error occurs when too many statistical
tests are performed on the same variables in a data set, with
each test having its own risk of Type I error (often set by tra-

dition at o0 = .05 and sometimes called “testwise error’).
Multivariate techniques minimize this because they allow for
simultaneous comparisons among the variables rather than
requiring many statistical tests be conducted.

For example, if a researcher wants to see if four attach-
ment style variables can predict 10 personality disorder vari-
ables, then a series of 10 multiple regressions are required to
examine each criterion variable separately. As each addi-
tional regression is run and the multiple R tested for statisti-
cal significance, then the experimentwise (EW) Type I error
rate would increase. Assuming each hypothesis were inde-
pendent and a traditional testwise (TW) error rate of .05, then
the experimentwise error rate could be estimated as Oigy = 1
— (1 —apw)*=1-(1-.05)10= 40, which would be consid-
ered quite substantial even by those most tolerant of Type I
errors. What’s more, if a Type I error did occur, the re-
searcher cannot identify which of the statistically significant
results are errors and which reflect true relationships be-
tween the variables, thereby potentially invalidating the en-
tire study! However, using a multivariate technique such as
CCA, the relationships between the four attachment vari-
ables and the 10 personality variables could be examined si-
multaneously. Because only one test was performed, the risk
of committing a Type I error is minimized. Of course, even
with one statistical significance test at o = .05, one still does
not know for sure whether one has committed a Type I error.
Nevertheless, as the experimentwise error increases, so does
our confidence that a Type I error may have been committed
somewhere in the study.

An extremely important second advantage of multivariate
techniques such as CCA is that they may best honor the real-
ity of psychological research. Most human behavior research
typically investigates variables that possibly have multiple
causes and multiple effects. Determining outcomes based on
research that separately examines singular causes and effects
may distort the complex reality of human behavior and cog-
nition. Therefore, it is important to not only choose a statisti-
cal technique that is technically able to analyze the data but
also a technique that is theoretically consistent with the pur-
pose of the research. This congruence between the nature of
the problem and the choice of statistical methods is particu-
larly salient in personality research given the complexity of
the constructs examined. Fish (1988) demonstrated, for ex-
ample, how important multivariate relationships can be
missed when data are studied with univariate methods.

Finally, and more specific to CCA, this technique can be
used instead of other parametric tests in many instances,
making it not only an important technique to learn but a com-
prehensive technique as well. As has been demonstrated by
Henson (2000), Knapp (1978), and Thompson (1991), virtu-
ally all of the parametric tests most often used by behavioral
scientists (e.g., ANOVA, MANOVA, multiple regression,
Pearson correlation, ¢ test, point-biserial correlation,
discriminant analysis) can be subsumed by CCA as special
cases in the GLM. This is not to say that CCA should always



CANONICAL CORRELATION ANALYSIS 39

be used instead of these other methods because, in many
cases, this may be a long, tedious way to conduct an other-
wise simple analysis. However, there are two important im-
plications here. First, it is important to note that there are
special circumstances in which CCA may be more appropri-
ate than some of these other analytical techniques. Second,
and more important, understanding that these techniques are
intricately related and fundamentally the same in many re-
spects may help facilitate conceptual understanding of statis-
tical methods throughout the GLM.

APPROPRIATE USES AND GENERAL
OVERVIEW OF CCA

CCA is most appropriate when a researcher desires to exam-
ine the relationship between two variable sets. For CCA to
make theoretical sense as a multivariate analysis, there
should be some rationale for why the variables are being
treated together in variable sets. For example, a researcher
may have four different measures of intelligence in the pre-
dictor variable set and three different measures of creativity
in the criterion variable set. The research question of interest,
then, would be whether there is a relationship between intel-
ligence and creativity as multioperationalized in the variable
sets. In contrast, if the researcher only had one criterion mea-
sure of creativity, then multiple regression would be con-
ducted. If only one variable set were available (e.g., many in-
dexes of intelligence), then the researcher may choose to
conduct some sort of factor analysis to synthesize the vari-
ables. If more than one variable exists in both sets, then CCA
may be the analysis needed.

Although one variable set is often identified as the predic-
tor set and the other as the criterion set based on a re-
searcher’s expectations about predictive causality, the nature
of CCA as a correlational method makes the declaration ulti-
mately arbitrary and suggests the researcher should be cau-
tious of making causal inferences outside of an experimental
design. Because CCA examines the correlation between a
synthetic criterion and synthetic predictor variable that are
weighted based on the relationships between the variables
within the sets, CCA can be conceptualized as a simple
bivariate correlation (Pearson r) between the two synthetic
variables.

Figure 1 illustrates the variable relationships in a hypo-
thetical CCA with three predictor and two criterion variables.
To evaluate the simultaneous relationship between several
predictor and several criterion variables, the observed vari-
ables in each set must somehow be combined together into
one synthetic (also called unobserved or latent) variable.
These synthetic variables are created in CCA by applying a
linear equation to the observed predictor variables to create a
single synthetic predictor variable and another linear equa-
tion to the observed dependent variables to create a single
synthetic criterion variable.

Predictor
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1

Predictor Synthetic

2

QL

Predictor Criterion

3 2

Pearson r

“Canonical Correlation”

FIGURE 1 Illustration of the first function in a canonical correla-
tion analysis with three predictors and two criterion variables. The
canonical correlation is the simple Pearson r between the two syn-
thetic variables, which were linearly combined from the observed
variables.

This use of linear equations is directly analogous to the
use of linear equations in the more familiar multiple regres-
sion in which beta (B) weights are multiplied with observed
scores (in Z score form) and then summed to yield synthetic
predicted scores (i.e., Y' = ;X + B,X,). Through the use of
standardized weights analogous to beta weights, CCA cre-
ates two linear equations, one for the predictor variables and
one for the criterion variables. These equations then yield the
two synthetic variables illustrated in Figure 1.

It is important to note, however, that these two equations
are generated to yield the largest possible correlation be-
tween the two synthetic variables. That is, the variance in the
observed predictor variables is combined to maximally cor-
relate with the combined variance in the observed criterion
variable set. It is at this point that one can now see the most
foundational component of all GLM analyses. The most cen-
tral statistic in a CCA is the canonical correlation between
the two synthetic variables, and this statistic is nothing more
or less than a Pearson r (see Figure 1). Everything that occurs
in the CCA is designed to maximize this simple correlation.
The reader is referred to Henson (2002) and Thompson
(1984) for accessible demonstrations of the equations to cre-
ate the synthetic variables; and we therefore assume here that
the reader is familiar with the role of linear equations as is
performed by the standardized regression equation. To-
gether, this set of equations is called a canonical function (or
variate).

Furthermore, in a CCA, there will be as many canonical
functions as there are variables in the smaller of the two vari-
able sets (e.g., two functions for the example in Figure 1). As
discussed, the first function creates the two synthetic vari-
ables so that they are as strongly correlated as possible given
the scores on the observed variables. Unless the canonical
correlation from this first function is a perfect 1.00 (which of
course is not very realistic), then there will be residual vari-
ance left over in the two variable sets that cannot be ex-
plained. The second function creates two more synthetic
variables that are as strongly correlated as possible given the
residual variance left over after the first function and given



40 SHERRY AND HENSON

the condition that these new synthetic variables are perfectly
uncorrelated with both of the synthetic variables in the first
function. This condition is sometimes called double
orthogonality because both synthetic variables in subsequent
functions must be uncorrelated with both synthetic variables
in all preceding functions. Analogous to a principal compo-
nent analysis, this process repeats until either all the variance
is explained from the original variables or until there are as
many functions as there are variables in the smaller variable
set. As we note later, however, only those functions that are
able to explain a reasonable amount of the relationship be-
tween the original variable sets are considered for interpreta-
tion. This decision is analogous to a researcher only defining
and interpreting the strongest factors in a factor analysis.

SOME BASIC ASSUMPTIONS
OF THE CCA PROCEDURE

As with all analyses, appropriate use of CCA comes with
some basic assumptions. In the interests of brevity and jour-
nal space, these assumptions will not be extensively ad-
dressed here. Tabachnick and Fidell (1996) and Thompson
(1984) have provided sufficient reviews. Among CCA as-
sumptions (e.g., sample size issues, linearity), perhaps the
most important one is multivariate normality. This assump-
tion is the multivariate analog of the univariate normality as-
sumption and, put simply, requires that all variables and all
linear combinations of variables are normally distributed.
However, the evaluation of multivariate normality can be dif-
ficult. Mardia (1985) presented a statistical approach and
Henson (1999) demonstrated a graphical method.

SOME IMPORTANT CCA TERMS

CCA language is important to learn and understand to inter-
pret a CCA and subsequently write a concise results section
for manuscripts. Many of the statistics in a CCA have
univariate analogs, and it would be helpful if similar statistics
would have similar names across analyses. Unfortunately,
this is often not the case (which contributes to the compart-
mentalized knowledge of many regarding classical statistical
methods). If it were, then graduate students would be much
less confused, and we methodology professors would appear
much less intelligent because others besides ourselves would
happen to know the lingo! At the risk of establishing some
commonalities with other analyses such as multiple regres-
sion, we present the following brief definitions of the most
relevant CCA statistics. In isolation, these terms probably
have limited utility; nevertheless, it is hoped that this list will
help inform the CCA example to follow.

The canonical correlation coefficient (R,.) is the Pearson r
relationship between the two synthetic variables on a given
canonical function (see Figure 1). Because of the scaling cre-
ated by the standardized weights in the linear equations, this
value cannot be negative and only ranges from O to 1. The R,.
is directly analogous to the multiple R in regression.

The squared canonical correlation (R?) is the simple
square of the canonical correlation. It represents the propor-
tion of variance (i.e., variance-accounted-for effect size)
shared by the two synthetic variables. Because the synthetic
variables represent the observed predictor and criterion vari-
ables, the R? indicates the amount of shared variance be-
tween the variable sets. It is directly analogous to the R2
effect in multiple regression.

A canonical function (or variate) is a set of standardized
canonical function coefficients (from two linear equations)
for the observed predictor and criterion variable sets. There
will be as many functions as there are variables in the
smaller variable set. Each function is orthogonal to every
other function, which means that each set of synthetic pre-
dictor and criterion variables will be perfectly uncorrelated
with all other synthetic predictor and criterion variables
from other functions. Because of this orthogonality, the
functions are analogous to components in a principal com-
ponent analysis. A single function would be comparable to
the set of standardized weights found in multiple regression
(albeit only for the predictor variables). This orthogonality
is convenient because it allows one to separately interpret
each function.

Standardized canonical function coefficients are the stan-
dardized coefficients used in the linear equations discussed
previously to combine the observed predictor and criterion
variables into two respective synthetic variables. These
weights are applied to the observed scores in Z-score form
(thus the standardized name) to yield the synthetic scores,
which are then in turn correlated to yield the canonical corre-
lation. The weights are derived to maximize this canonical
correlation, and they are directly analogous to beta weights in
regression.

A structure coefficient (r) is the bivariate correlation be-
tween an observed variable and a synthetic variable. In CCA, it
is the Pearson rbetween an observed variable (e.g., a predictor
variable) and the canonical function scores for the variable’s
set (e.g., the synthetic variable created from all the predictor
variables via the linear equation). Because structure coeffi-
cients are simply Pearson r statistics, they may range from —1
to +1, inclusive. They inform interpretation by helping to de-
fine the structure of the synthetic variable, that is, what ob-
served variables can be useful in creating the synthetic
variable and therefore may be useful in the model. These coef-
ficients are analogous to those structure coefficients foundin a
factor analysis structure matrix or in a multiple regression as
the correlation between a predictor and the predicted Y' scores
(Courville & Thompson, 2001; Henson, 2002).

Squared canonical structure coefficients (r?) are the
square of the structure coefficients. This statistic is analogous
to any other r2-type effect size and indicates the proportion of
variance an observed variable linearly shares with the syn-
thetic variable generated from the observed variable’s set.

A canonical communality coefficient (h?) is the propor-
tion of variance in each variable that is explained by the com-
plete canonical solution or at least across all the canonical
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functions that are interpreted. It is computed simply as the
sum of the 7;? across all functions that are interpreted for a
given analysis. This statistic informs one about how useful
the observed variable was for the entire analysis.

EXAMPLE AND (STEP-BY-STEP)
INTERPRETATION OF CCA

In this section, we detail how to run and interpret a CCA from
example SPSS output (other program outputs would be simi-
lar). Our style is purposefully highly applied, and our intent
is to provide a step-by-step guide for researchers and others
seeking an initial exposure to the method for use. Hopefully,
this context will allow the reader to gain increased under-
standing of the statistics discussed previously and a frame-
work for more theoretical study.

The data used here were taken from Sherry, Lyddon, and
Henson’s (2004) study of the relationship between adult at-
tachment variables and adult personality style. The basic
question of this study asked whether adult attachment vari-
ables (theoretically presumed to be formed in the very early
years of life) are predictive of certain personality styles
(theoretically presumed to lie on a continuum as opposed to
a purely diagnostic perspective). The predictor variable set
contained four measures representing the dimensions of
Bartholomew’s adult attachment theory as assessed by the
Relationship Scales Questionnaire (RSQ; 30 items on a
5-point scale; cf. Griffin & Bartholomew, 1994). These
predictor variables were secure, dismissing, fearful, and
preoccupied attachment. The criterion variable set con-
tained personality variables as measured by the Millon
Clinical Multiaxial Inventory—III (MCMI-III; Millon, Da-
vis, & Millon, 1997). The scales that relate to the 10 per-
sonality disorders recognized in the Diagnostic and
Statistical Manual of Mental Disorders (4th ed.; American
Psychiatric Association, 1994) were used (raw scores),
which included the Schizoid, Avoidant, Dependent, Histri-
onic, Narcissistic, Antisocial, Compulsive, Schizotypal,
Borderline, and Paranoid personality scales. The partici-
pants included 269 undergraduate students recruited from
three different universities located in the South central,
Southeastern, and Pacific Northwestern regions of the
United States.

Unfortunately, there is no “point-and-click” option in
SPSS for CCA. However, creating some short computer
commands (syntax) allows one to easily conduct the analy-
sis. Simply click the File, New, Syntax sequence and then
type the following syntax in the window provided.

MANOVA

schizdr avoidr dependr histrior narcisr antisocr compulsr
schtypr borderr parandr WITH secure dismiss fearful
preoccup

/PRINT=SIGNIF(MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR ALPHA(.999)).

This syntax will remain the same for any CCA except of
course for changing the variable names to match other data.
The criterion set of variables are listed before the WITH and
the predictor variables are listed afterward. The commands
can be implemented using the RUN menu on the toolbar. An
abbreviated output is presented in Appendix A.

A General Framework for Interpreting
GLM Analyses

In many explanatory research contexts, it is often important
to identify variables that contribute to the model being tested.
For example, in this example, we not only care about whether
there is a relationship between the predictor and criterion
variable sets, but we also want to know what attachment and
personality variables are more or less useful in the model and
whether they relate to each other in expected directions.
Identification of variable importance, then, is fundamental to
many of the analyses we conduct.

Furthermore, within the GLM, all analyses yield r2-type
effect sizes that must be considered prior to evaluating what
variables contributed to this effect. It makes no sense, for ex-
ample, to have a minuscule (and uninterpretable) effect size
and yet try to identify variables that contributed to that effect!
Accordingly, Thompson (1997) articulated a two-stage
hierarchal decision strategy that can be used to interpret any
GLM analysis:

All analyses are part of one general linear model. ... When
interpreting results in the context of this model, researchers
should generally approach the analysis hierarchically, by
asking two questions:

Do I have anything? (Researchers decide this question by
looking at some combination of statistical significance tests,
effect sizes ... and replicability evidence.)

If I have something, where do my effects originate? (Re-
searchers often consult both the standardized weights im-
plicit in all analyses and structure coefficients to decide this
question.). (p. 31)

Once notable effects have been isolated, then (and only
then) interpretation shifts to the identification of what vari-
ables in the model may have contributed to that effect. The
weights (often standardized) present in all GLM analyses are
typically examined to judge the contribution of a variable to
the effect observed. For example, within regression, many
researchers may discount the value of a variable with a small
or near-zero § weight. This hierarchal strategy is employed
in the following to help frame the interpretation of the CCA.

Do You Have Anything?

The researcher initially needs to determine whether the ca-
nonical model sufficiently captures the relationship between
the predictor and criterion variable sets to warrant interpreta-
tion. That is, does a noteworthy relationship between the
variables exist? As noted previously, there are several ways
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to evaluate a possible answer to this question, but we delimit
ourselves to the most common approaches of statistical sig-
nificance testing and effect size interpretation.

Step 1. The initial consideration is to evaluate the full
canonical model. The first portion of Appendix A presents
four ways to evaluate for statistical significance with
multivariate tests. These test statistics are for the full model,
which means they evaluate the shared variance between the
predictor and criterion variables across all of the canonical
functions. Each test statistic can be converted to the more fa-
miliar F statistic, which can then be evaluated for statistical
significance. Of importance, because each of the four meth-
ods is based on somewhat different theoretical frameworks,
each can lead to different conclusions. The astute reader will
note, for example, that the approximate F statistics in Appen-
dix A were all slightly different. Furthermore, in this particu-
lar case, one of the methods (Roy’s) did not even yield a re-
sult due to some limits to this approach.

Nevertheless, by far the most common method used is
Wilks’s lambda (M), as it tends to have the most general ap-
plicability. In our example, the full model was statistically
significant, with a Wilks’s A of .439, F(40, 968.79) =5.870, p
<.001. (Note that the column in Appendix A labeled “Signif-
icance of F” presents the p value associated with the proba-
bility of the sample results assuming the null hypothesis is
exactly true in the population given the sample size. Because
the p value is rounded to three decimal places, we can only
note that p <.001 in this case.) Accordingly, we can reject the
null hypothesis that there was no relationship between the
variable sets (i.e., reject R. = 0) and conclude that there prob-
ably was a relationship.

Of course, this statistical significance test tells us abso-
lutely nothing about the magnitude of the relationship,
which is one limitation of such tests about which increasing
numbers of researchers are becoming aware (Wilkinson &
APA Task Force on Statistical Inference, 1999). As a bit of
a caveat, statistical significance tests are impacted rather
heavily by sample size, and it is very possible, with large
enough sample sizes, to get statistically significant out-
comes for very small, unimportant effects. Therefore, it is
important to interpret effect size indexes (and perhaps other
information, such as confidence intervals) alongside p val-
ues to determine the practical significance of study out-
comes. The interested reader is referred to Harlow, Mulaik,
and Steiger (1997) for discussion of the debate surrounding
statistical significance tests.

Conveniently, Wilks’s A has a useful property that helps
inform this issue because it represents something of an in-
verse effect size or the amount of variance not shared be-
tween the variable sets. Therefore, by taking 1 — A, we found
an overall effect of 1—.439=.561= R? for the full model.
This effect statistic can be interpreted just like the multiple
R2in regression as the proportion of variance shared between
the variable sets across all functions. Thus far, then, we have

noted that the full model was both statistically significant and
had what may be considered a large effect size.

Step 2. Of course, it would be too easy if we only had
to evaluate the full canonical model to decide if we had any-
thing. Instead, we need to dig a bit deeper and evaluate each
canonical function. Remember that there will be as many
functions (i.e., variates) as there are variables in the smaller
set, which in this case is four (the predictor set). Each func-
tion must be evaluated because some of them may not ex-
plain enough of the relationship between the variable sets to
warrant interpretation, much like a weak or poorly defined
factor would be discarded. Furthermore, it is possible that the
full model appears noteworthy at the cumulative level, but
examination of each function reveals each of them to be weak
and not interpretable in and of themselves. For example, each
function may not contribute much to the total solution, but
the cumulative total solution may be statistically significant
and perhaps noteworthy. In such cases, interpretation of each
function separately would be questionable.

The next section of the Appendix A output lists each func-
tion separately along with its canonical correlation. (Note
that the term root is equivalent to function in this output.) Re-
call that the first function will be created to maximize the
Pearson r (canonical correlation) between the two synthetic
variables. Then, using the remaining variance in the ob-
served variables, the next function will be created to maxi-
mize another Pearson r (the second canonical correlation)
between two other synthetic variables under the condition
that these new synthetic variables are perfectly uncorrelated
with all others preceding them. For this example, this contin-
ued until four orthogonal (i.e., uncorrelated) functions were
created.

The CCA researcher should only interpret those functions
that explain a reasonable amount of variance between the
variable sets or risk interpreting an effect that may not be
noteworthy or replicable in future studies. In our example,
we chose to interpret the first two functions, as they ex-
plained 38.1% and 20.0% of the variance within their func-
tions, respectively. Note that these numbers are the squared
canonical correlations in Appendix A. Note as well that this
means we have decided that the third and fourth functions,
which each explained less than 10% of the variance in their
functions (9.6% and 1.9%, respectively), were sufficiently
weak so as to not warrant interpretation.

The highly observant reader may notice that the sum of the
squared canonical correlations (38.1% + 20.0% = 58.1%) for
just the first two functions was larger than the overall effect
size we found from the Wilks’s A (56.1%). This, of course,
begs the question of how the variance explained by the full
model can be less than that explained by its parts! The answer
to this question lies in the orthogonal nature of the functions.
Recall that the second function is created after the first has
explained as much of the variability in the observed variable
sets as possible. Also recall that the second function must be
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orthogonal to the first function. This means that the second
function is not explaining the original observed variance. In-
stead, it is explaining what is left over, and it may explain a
fairly large amount (say, 20.0% as in our example) of this left
over variance. Thus, the sum of R? the effect sizes for each
function will often be larger than the full model effect.

Step 3. Those readers with a penchant for using statis-
tical significance tests to evaluate results may be wondering
why we did not just test each function’s canonical correlation
for statistical significance to decide whether the function
should be interpreted. There are two reasons this may be
problematic as a sole consideration. First, the dependent rela-
tionship between statistical significance tests and sample size
has been well documented, and increasing numbers of re-
searchers are realizing that even small, nonmeaningful ef-
fects can be statistically significant at some sufficiently large
sample size (see, e.g., Cohen, 1994; Henson & Smith, 2000;
Thompson, 1996; Wainer & Robinson, 2003; Wilkinson &
APA Task Force on Statistical Inference, 1999). Given that
multivariate analyses such as CCA are generally large sam-
ple techniques, one must be careful of not overinterpreting
results that may be statistically but not practically significant.

Second, and more important, there is no easy way to di-
rectly test each function separately for statistical signifi-
cance. Instead, the functions are tested in hierarchal fashion
in which the full model (Functions 1 to 4) is tested first, then
Functions 2 to 4 are tested and so forth until only the last
function is tested by itself. Because the final functions in a
CCA are often weak and uninterpretable anyway, the statisti-
cal significance test of the final function is often uninforma-
tive. (Of course, if the last function were statistically
significant, then one could infer that all functions preceding
it were as well.) The third section of Appendix A lists the di-
mension reduction analysis in which these hierarchal statisti-
cal significance tests are presented. Unfortunately, it is a
common error in reports of CCA to assume that the 1 to 4 test
evaluates the first function, the 2 to 4 test evaluates the sec-
ond function, and so forth.

For example, Sciarra and Gushue (2003) conducted a CCA
between six racial attitude variables and four religious orienta-
tion variables. Sciarra and Gushue (2003) reported that

Assumptions regarding multivariate normality were met, and
four pairs of variates [i.e., functions] were generated from the
data. A dimension reduction analysis showed the first three
of these to be [statistically] significant, with Wilks’s lambdas
of .69 (p <.01), .84 (p < .01), and .92 (p < .02), respectively.
The canonical correlations for the three pairs were .43, .28,
and .24, respectively. (p. 478)

Note that this quote implies that all three functions are statis-
tically significant in and of themselves. However, it is en-
tirely possible that the third function is not, given that the
Wilks’s lambda presented (.92, p < .02) is actually a cumula-

tive effect from Functions 3 and 4. If 3 were able to be iso-
lated, the effect would be likely be smaller, and the p value
would be larger, perhaps even larger than a traditional o =
.05.

Returning now to our example, Appendix A presents the
dimension reduction analysis in which the hierarchal statisti-
cal significance tests are presented. Here we see that the full
model was statistically significant (but we already knew that)
as well as the cumulative effects of Functions 2 to 4 and 3 to
4. Function 4 was not statistically significant in isolation.
Even though functions 3 to 4 were cumulatively statistically
significant, we have chosen not to interpret either one, as
they only explained 9.6% and 1.9%, respectively, of the vari-
ance by themselves (see R? for each function). When one
considers that these R? actually represent less than 10% of
the remaining variance after that explained by Functions 1
and 2, then the effect sizes of Functions 3 and 4 become even
a bit less impressive.

Summary. 1In this example then, we have thus far con-
cluded that there indeed was a noteworthy relationship be-
tween our variables sets by evidence of statistical signifi-
cance and effect sizes. Furthermore, this relationship was
largely captured by the first two functions in the canonical
model.

Where Does the Effect Come From?

Because we have established that we have something, we can
turn now to the second question in our interpretation strategy.
That is, what variables are contributing to this relationship be-
tween the variables sets across the two functions? Identifica-
tion of the contributing variables can be critical to informing
theory. In our example, we want to know (in terms of degree
and directionality) what attachment variables were related to
what personality variables in this multivariate analysis.
Traditionally, researchers have examined the weights in-
herent in all GLM analyses to help answer this second ques-
tion. In regression, beta weights are often consulted. Beta
weights reflect the relative contribution of one predictor to
the criterion given the contribution of other predictors. Un-
fortunately, researchers have less often consulted structure
coefficients, which reflect the direct contribution of one pre-
dictor to the predictor criterion variable regardless of other
predictors. This neglect occurs in spite of the fact that these
coefficients can be critical in the presence of
multicollinearity, which is jargon for when you have corre-
lated predictor variables in a regression analysis (Courville
& Thompson, 2001). In multivariate analyses, structure coef-
ficients are more often consulted, such as when a factor ana-
lyst reports the structure matrix for correlated factors.
Indeed, structure coefficients increase in importance
when the observed variables in the model increase in their
correlation with each other. Because multivariate researchers
can purposefully use variables that are related (we did, after
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all, select variables that can be logically grouped into sets for
our CCA), structure coefficients are critical for deciding
what variables are useful for the model. (Readers unfamiliar
with structure coefficients are strongly encouraged to review
Courville & Thompson, 2001, for a demonstration of struc-
ture coefficients in the context of regression.) We therefore
assume that interpretation of both standardized weights and
structure coefficients are necessary for understanding vari-
able importance in a CCA.

Step 4.  'We first examine the standardized weights and
structure coefficients to interpret the first function. Appendix
A presents the weights and structure coefficients for the crite-
rion (called “Dependent”) and predictor (called
“Covariates”) variables for all four functions. Of course we
are only concerned with the first two functions and will ig-
nore the last two.

Atthis point, itis quite useful to create a table of these coef-
ficients to help us understand the patterns among our vari-
ables. Table 1 represents our recommended method for
reporting CCA results and, for this example, presents the stan-
dardized canonical function coefficients (i.e., the weights) and
structure coefficients for all variables across both functions.
The squared structure coefficients (7 ) are also given, which
represent the percentage of shared variance between the ob-
served variable and the synthetic variable created from the ob-
served variable’s set. The last column lists the communality
coefficients (h2), which represent the amount of variance in
the observed variable that was reproducible across the func-
tions. Note that these are simply the sum of the variable’s r?s .
The communalities are analogous to communality coeffi-
cients in factor analysis and can be viewed as an indication of
how useful the variable was for the solution. For emphasis,
structure coefficients above .45 are underlined in Table 1 (fol-

lowing a convention in many factor analyses). Communalities
above 45% are also underlined to show the variables with the
highest level of usefulness in the model.

Looking at the Function 1 coefficients, we see that rele-
vant criterion variables were primarily avoidant, dependent,
borderline, and paranoid, with histrionic, schizotypal, and
schizoid having made secondary contributions to the syn-
thetic criterion variable. This conclusion was supported
mainly by the squared structure coefficients, which indicated
the amount of variance the observed variable can contribute
to the synthetic criterion variable. The canonical function co-
efficients were also consulted, and these personality styles
tended to have the larger coefficients. A slight exception in-
volves the borderline and paranoid personality styles, which
had modest function coefficients but large structure coeffi-
cients. This result is due to the multicollinearity that these
two variables had with the other criterion variables. In es-
sence, the linear equation that used the standardized coeffi-
cients to combine the criterion variables (on Function 1) only
modestly incorporated the variance of the borderline and
paranoid variables when, in fact, these variables could have
contributed substantially to the created synthetic variable (as
shown by the r, and r?). Notice as well that with the excep-
tion of histrionic, all of these variables’ structure coefficients
had the same sign, indicating that they were all positively re-
lated. Histrionic was inversely related to the other personal-
ity styles.

The other side of the equation on Function 1 involves the
predictor set. The Table 1 results inform us that the secure
and preoccupied attachment variables were the primary con-
tributors to the predictor synthetic variable, with a secondary
contribution by fearful. Because the structure coefficient for
secure was positive, it was negatively related to all of the per-
sonality styles except for histrionic. Preoccupied and fearful

TABLE 1
Canonical Solution for Attachment Predicting Personality for Functions 1 and 2
Function 1 Function 2

Variable Coef r, 2 (%) Coef r, 2 (%) h2 (%)
Schizoid 427 —454 20.61 627 13 50.84 71.45
Avoidant —467 =806 64.96 074 356 12.67 77.63
Dependent 442 —782 61.15 -797 -394 15.52 76.67
Histrionic 494 583 33.99 -.136 -.574 32.95 66.94
Narcissistic -.298 294 8.64 -.081 -.104 1.08 9.72
Antisocial -.070 —-.280 7.84 —-.193 -.129 1.66 9.50
Compulsive -.163 .061 0.37 224 332 11.02 11.39
Schizotypal 224 —.542 29.38 .082 272 7.40 36.78
Borderline -.340 —.671 45.83 297 022 0.05 45.88
Paranoid -234 —.651 42.38 -.004 .290 8.41 50.79
R? 38.10 20.00

Secure 578 720 51.84 -.208 -.356 12.67 64.51
Dismissing -.163 -.100 1.00 .550 801 64.16 65.16
Fearful -226 —477 22.75 353 .396 15.68 38.43
Preoccupied —.664 =693 48.02 -.538 =642 41.22 89.24

Note.  Structure coefficients (r,) greater than |.45] are underlined. Communality coefficients (h?) greater than 45% are underlined. Coef = standardized canonical
function coefficient; r, = structure coefficient; r2 = squared structure coefficient; n= communality coefficient.
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attachment were positively related to the personality disor-
ders, again except for histrionic.

These results are generally supportive of the theoretically
expected relationships between adaptive and maladaptive
adult attachment and personality disorders. Note that the rel-
evant personality disorders tended to involve social appre-
hension and negative symptomology at a general level, with
the exception of histrionic. Because the histrionic personality
disorder is marked with excessive emotionality and attention
seeking, it seems theoretically consistent that it should have
been negatively related to the other relevant disorders in this
function. Therefore, this function seems to capture theoreti-
cally consistent relationships that we may collectively call
“attachment and social apprehension.” Note that this process
for interpreting a function is directly analogous to identifying
the useful predictors in a regression or interpreting and nam-
ing a factor, with the exception that the CCA has two equa-
tions that one must consider.

Step 5.  Moving on to Function 2, the coefficients in Ta-
ble 1 suggest that the only criterion variables of relevance
were schizoid and histrionic, albeit less so for the latter.
These personality styles were inversely related on this func-
tion. As for attachment, dismissing was the dominant predic-
tor, along with preoccupied again. These attachment vari-
ables were also inversely related. Looking at the structure
coefficients for the entire function, we see that dismissing
was positively related to schizoid and negatively related to
histrionic. Preoccupied attachment had the opposite pattern.
Given that the dismissing and preoccupied predictors and
schizoid criterion variable were the dominant contributors,
we collectively label this function as “social detachment,”
given the nature of these variables. In cases in which the re-
searcher has additional noteworthy functions, the previous
process would simply be repeated.

Summary

The complexity of a CCA analysis is perhaps justified given
the richness of the relationships it intends to model. In this
example, the first function demonstrated theoretically con-
sistent relationships among all of the variables that contrib-
uted to the function. The Function 1 results also point to a
need for further study regarding the histrionic variable. For
example, it may be important to examine the various defense
mechanisms used in the presentation of this style versus other
styles. Perhaps the histrionic personality style is so domi-
nated by defense mechanisms that on measures such as the
RSQ, which primarily rely on self-report of one’s internal af-
fective experience, people with histrionic personality fea-
tures report as securely attached.

The second function also yielded theoretically expected
relationships; however, this function capitalized on variance
in the dismissing predictor that was not useful in the first
function. Therefore, not only do we learn about relationships

between attachment and personality, we also learn that dis-
missing attachment is something of a different animal than
the other attachment variables. Additional work is needed to
further explicate this possibility.

We also learn a good deal from the variables not (or only
moderately) useful in the model. For example, the fearful
predictor only made a marginal contribution as a predictor
(see the fearful 42 in Table 1), thereby suggesting that it may
not have been strongly related to personality style. Further-
more, the narcissistic, antisocial, and compulsive personality
styles did not appear to be related to attachment (see the 72
statistics in Table 1). This is informative, particularly given
the general disregard for some social norms that these disor-
ders typify and the general sense of social apprehension that
characterizes the other disorders (again, with the exception
of histrionic, which represents something of the opposite of
social apprehension).

Writing Up the Results

Perhaps one of the most challenging aspects of employing a
newly learned method in research is actually writing up the
results in a format appropriate for the journal article or dis-
sertation. In light of this, we present in Appendix B a brief
sample write-up of these findings. This narrative may serve
as a guide for others seeking to use CCA in their research, al-
though it is recognized that other writing styles are certainly
possible and that other researchers may choose to emphasize
differing elements of the findings.

CONCLUSIONS

This article was meant to be a practical introduction to CCA.
However, it should be noted that our brief discussion is not
meant as a detour around the needed quantitative foundations
of human behavior research for full understanding of CCA
and related analyses. Advanced quantitative coursework not-
withstanding, it is our social cognitive theory position that
learning requires some sense of self-efficacy in one’s ability
to acquire and utilize new information. This self-efficacy is
often best developed with mastery experiences occurring
within reach of one’s already possessed skill set. Compart-
mentalized statistical education that does not seek to estab-
lish links and conceptual understanding among analyses is
unfortunately not conducive to this goal. As such, we ap-
plaud the Journal of Personality Assessment’s creation of the
“Statistical Developments and Applications” section in
which methodological issues can be addressed from a practi-
cal and comprehensible manner for graduate students and ap-
plied researchers. As many readers know, other journals have
created similar sections with outstanding results.

It is hoped that this article demonstrates the utility of CCA
for some personality research. Our example was drawn from
a substantive study, but CCA’s flexibility in the GLM allows



46 SHERRY AND HENSON

it to be employed in a variety of applications such as, for ex-
ample, multivariate, criterion-related validity studies. Fur-
thermore, like all GLM analyses, the nature of CCA as a
fundamentally correlational technique enhances its accessi-
bility. Almost all of the previous discussion hinges on
Pearson r or r2-type statistics; what changes from analysis to
analysis are the variables being related and the language used
to discuss it all.
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APPENDIX A

This appendix includes an abbreviated SPSS output for the CCA example.
Entries in the following prefaced with “Note” were added to help clarify the

Note: Statistical Significance Tests for the Full CCA Model

Effect ... Within Cells Regression Multivariate Tests of Significance (S =4, M = 2., N = 126%2)

47

portions of the output being referenced in the article discussion. For the sake
of brevity, elements of the original output that were not specifically salient
to interpreting the CCA were deleted, such as univariate results for each de-

pendent variable.

Test Name Value Approximate F Hypothesis DF Error DF Significance of F
Pillais’s 69574 5.43238 40.00 1032.00 .000
Hotelling’s 99148 6.28351 40.00 1014.00 .000
Wilks’s 43916 5.86990 40.00 968.79 .000
Roy’s 38145
Note: Canonical Correlations for Each Function Separately
Eigenvalues and Canonical Correlations
Root No. Eigenvalue % Cumulative % Canonical Correlation Squared Correlation
1 .617 62.198 62.198 .618 381
2 250 25.225 87.423 447 200
3 .106 10.673 98.096 309 .096
4 .019 1.904 100.000 .136 .019
Note: Hierarchal Statistical Significance Tests In Which Only the Last Canonical Function Is Tested Separately
Dimension Reduction Analysis
Roots Wilks h F Hypothesis DF Error DF Significance of F
1to4 43916 5.86990 40.00 968.79 .000
2to4 70998 3.44861 27.00 748.29 .000
3to4 .88755 1.97446 16.00 514.00 .013
4t04 .98147 0.69595 7.00 258.00 675
Note: Standardized Weights for All Functions for the Criterion Variable Set
Standardized Canonical Coefficients for Dependent Variables

Function No.
Variable 1 2 3 4
SCHIZDR 427 .627 0.983 929
AVOIDR —467 074 0.371 591
DEPENDR —.442 =797 0.071 463
HISTRIOR 494 -.136 1.160 484
NARCISR —.298 -.081 0.133 .015
ANTISOCR -.070 -.193 0.154 —.634
COMPULSR —-.163 224 0.553 -384
SCHTYPR 224 .082 -0.529 -.380
BORDERR -.340 297 0.821 -.044
PARANDR -234 —-.004 -0.559 -.897
Note: Structure Coefficients for All Functions for the Criterion Variable Set
Correlations Between Dependent and Canonical Variables

Function No.
Variable 1 2 3 4
SCHIZDR —.454 713 112 146
AVOIDR —.806 .356 -.174 218
DEPENDR -.782 -394 .042 271
HISTRIOR 583 -574 400 -.295
NARCISR 294 -.104 448 —.495
ANTISOCR -.280 -.129 .303 —.460
COMPULSR .061 332 .081 .096
SCHTYPR -.542 272 -.054 -.202
BORDERR -.677 .022 375 -.226
PARANDR —.651 290 -.002 —467




48

Note: Standardized Weights for All Functions for the Predictor Variable Set

Standardized Canonical Coefficients for Covariates

SHERRY AND HENSON

Canonical Variable

Covariate 1 2 3 4
Secure 578 -.208 822 240
Dismissing —-.163 .550 713 -.595
Fearful -.226 353 244 927
Preoccupied —.664 -.538 584 -.303
Note: Structure Coefficients for All Functions for the Predictor Variable Set
Correlations Between Covariates and Canonical Variables
Canonical Variable

Covariate 1 2 3 4
Secure 720 -.356 573 .160
Dismissing -.100 .801 .399 -435
Fearful -477 .396 215 755
Preoccupied -.693 —.642 328 -.011

APPENDIX B line and paranoid personality styles, which had modest function coefficients

Sample Write-Up of the Results

A canonical correlation analysis was conducted using the four attachment
variables as predictors of the 10 personality variables to evaluate the
multivariate shared relationship between the two variable sets (i.e., adult at-
tachment and personality). The analysis yielded four functions with squared
canonical correlations ( R? ) of .381,.200, .096, and .019 for each successive
function. Collectively, the full model across all functions was statistically
significant using the Wilks’s A = .439 criterion, F(40, 968.79) = 5.870, p <
.001. Because Wilks’s A represents the variance unexplained by the model, 1
— A yields the full model effect size in an 2 metric. Thus, for the set of four
canonical functions, the r2 type effect size was .561, which indicates that the
full model explained a substantial portion, about 56%, of the variance shared
between the variable sets.

The dimension reduction analysis allows the researcher to test the hierarchal
arrangement of functions for statistical significance. As noted, the full model
(Functions 1 to 4) was statistically significant. Functions 2 to 4 and 3 to 4 were
also statistically significant, F(27, 748.29) = 3.449, p < .001, and F(16, 514) =
1.974, p = .013, respectively. Function 4 (which is the only function that was
tested in isolation) did not explain a statistically significant amount of shared
variance between the variable sets, F(7, 258) = .696, p = .675.

Giventhe R2 effects for each function, only the first two functions were
considered noteworthy in the context of this study (38.1% and 20% of
shared variance, respectively). The last two functions only explained 9.6%
and 1.9%, respectively, of the remaining variance in the variable sets after
the extraction of the prior functions.

Table 1 presents the standardized canonical function coefficients and
structure coefficients for Functions 1 and 2. The squared structure coefficients
are also given as well as the communalities (h2) across the two functions for
each variable. Looking at the Function 1 coefficients, one sees that relevant
criterion variables were primarily avoidant, dependent, borderline, and para-
noid, with histrionic, schizotypal, and schizoid making secondary contribu-
tions to the synthetic criterion variable. This conclusion was supported by the
squared structure coefficients. These personality styles also tended to have the
larger canonical function coefficients. A slight exception involved the border-

but large structure coefficients. This result was due to the multicollinearity
that these two variables had with the other criterion variables. Furthermore,
with the exception of histrionic, all of these variables’ structure coefficients
had the same sign, indicating that they were all positively related. Histrionic
was inversely related to the other personality styles.

Regarding the predictor variable set in Function 1, secure and preoccu-
pied attachment variables were the primary contributors to the predictor syn-
thetic variable, with a secondary contribution by Fearful. Because the
structure coefficient for secure was positive, it was negatively related to all
of the personality styles except for histrionic. Preoccupied and fearful at-
tachment were positively related to the personality disorders, again except
for histrionic. These results were generally supportive of the theoretically
expected relationships between adaptive and maladaptive adult attachment
and personality disorders, and we labeled Function 1 as “attachment and so-
cial apprehension” (for rationale, see Discussion section).

Moving to Function 2, the coefficients in Table 1 suggest that the only
criterion variables of relevance were schizoid and histrionic, albeit less so
for the latter. These personality styles were inversely related on this func-
tion. As for attachment, dismissing was now the dominant predictor, along
with Preoccupied again. These attachment variables were also inversely re-
lated. Looking at the structure coefficients for the entire function, we see that
dismissing was positively related to schizoid and negatively related to histri-
onic. Preoccupied attachment had the opposite pattern. Given the nature of
these variables, we labeled this function as “social detachment” (for ratio-
nale, see Discussion section).
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