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FIGURE 17.1
In my office during my Ph.D., probably preparing some teaching — I had quite long hair back then
because it hadn’t started falling out at that point

17.1. What will this chapter tell me?

Having failed to become a rock star, I went to university and eventually ended up doing a Ph.D. (in
Psychology) at the University of Sussex. Like many postgraduates, I taught to survive. I was allocated
to second-year undergraduate statistics. I was very shy at the time, and I didn’t have a clue about
statistics, so standing in front of a room full of strangers and talking to them about ANOVA was about
as appealing as dislocating my knees and running a marathon. I obsessively prepared for my first
session so that it would go well; I created handouts, I invented examples, I rehearsed what I would say. I
went in terrified but knowing that if preparation was any predictor of success then I would be OK.
About half way through one of the students rose majestically from her chair. An aura of bright white
light surrounded her and she appeared to me as though walking through dry ice. I guessed that she had
been chosen by her peers to impart a message of gratitude for the hours of preparation I had done and
the skill with which I was unclouding their brains of statistical mysteries. She stopped inches away from
me. She looked into my eyes and mine raced around the floor looking for the reassurance of my

shoelaces. ‘No one in this room has a rabbit! clue what you’re going on about’, she spat before storming
out. Scales have not been invented yet to measure how much I wished I’d run the dislocated-knees
marathon that morning. To this day I have intrusive thoughts about students in my lectures walking
zombie-like towards the front of the lecture theatre chanting ‘No one knows what you’re going on
about’ before devouring my brain in a rabid feeding frenzy.

The aftermath of this trauma is that I threw myself into trying to be the best teacher in the universe. I
wrote detailed handouts and started using wacky examples. Based on these I was signed up by a
publisher to write a book. This book. At the age of 23 I didn’t realize that this was academic suicide



(really, textbooks take a long time to write and they are not at all valued compared to research articles),
and I also didn’t realize the emotional pain I was about to inflict on myself. I soon discovered that
writing a statistics book was like doing a factor analysis: in factor analysis we take a lot of information
(variables) and SPSS effortlessly reduces this mass of confusion into a simple message (fewer
variables). SPSS does this in a few seconds. Similarly, my younger self took a mass of information
about statistics that I didn’t understand and filtered it down into a simple message that I could
understand: I became a living, breathing factor analysis ... except that, unlike SPSS, it took me two
years and some considerable effort.

17.2. When to use factor analysis

In science we often need to measure things that cannot be measured directly (so-called latent
variables). For example, management researchers might be interested in measuring ‘burnout’, which is
when someone who has been working very hard on a project (a book, for example) for a prolonged
period of time suddenly finds himself devoid of motivation, inspiration, and wants to repeatedly
headbutt their computer, screaming ‘please, Mike, unlock the door, let me out of the basement, I need to
feel the soft warmth of sunlight on my skin’. You can’t measure burnout directly: it has many facets.
However, you can measure different aspects of burnout: you could get some idea of motivation, stress
levels, whether the person has any new ideas and so on. Having done this, it would be helpful to know
whether these facets reflect a single variable. Put another way, are these different measures driven by
the same underlying variable?

This chapter explores factor analysis and principal component analysis (PCA) — techniques for
identifying clusters of variables. These techniques have three main uses: (1) to understand the structure
of a set of variables (e.g., Spearman and Thurstone used factor analysis to try to understand the structure
of the latent variable ‘intelligence’); (2) to construct a questionnaire to measure an underlying variable
(e.g., you might design a questionnaire to measure burnout); and (3) to reduce a data set to a more
manageable size while retaining as much of the original information as possible (e.g., factor analysis
can be used to solve the problem of multicollinearity that we discovered in Chapter 8 by combining
variables that are collinear).

There are numerous examples of the use of factor analysis in science. Most readers will be familiar
with the extroversion—introversion and neuroticism traits measured by Eysenck (1953). Most other
personality questionnaires are also based on factor analysis — notably Cattell’s (1966a) 16 personality
factors questionnaire — and these inventories are frequently used for recruiting purposes in industry (and
even by some religious groups). Economists, for example, might also use factor analysis to see whether
productivity, profits and workforce can be reduced down to an underlying dimension of company
growth, and Jeremy Miles told me of a biochemist who used it to analyse urine samples.

Both factor analysis and PCA aim to reduce a set of variables into a smaller set of dimensions
(called ‘factors’ in factor analysis and ‘components’ in PCA). To non-statisticians, like me, the
differences between a component and a factor are difficult to conceptualize (they are both linear

models), and the differences are hidden away in the maths behind the techniques.”? However, there are
important differences between the techniques, which I’'ll discuss in due course. Most of the practical
issues are the same regardless of whether you do factor analysis or PCA, so once the theory is over you
can apply any advice I give to either factor analysis or PCA.



17.3. Factors and components

If we measure several variables, or ask someone several questions about themselves, the correlation
between each pair of variables (or questions) can be arranged in a table (just like the output from a
correlation analysis as seen in Chapter 7). This table is sometimes called an R-matrix, just to scare you.
The diagonal elements of an R-matrix are all ones because each variable will correlate perfectly with
itself. The off-diagonal elements are the correlation coefficients between pairs of variables, or
questions.® Factor analysis attempts to achieve parsimony by explaining the maximum amount of
common variance in a correlation matrix using the smallest number of explanatory constructs. These
‘explanatory constructs’ are known as factors (or latent variables) in factor analysis, and they represent
clusters variables that correlate highly with each other. PCA tries to explain the maximum amount of
total variance (not just common variance) in a correlation matrix by transforming the original variables
into linear components.

Imagine that we wanted to measure different aspects of what might make a person popular. We
could administer several measures that we believe tap different aspects of popularity. So, we might
measure a person’s social skills (Social Skills), their selfishness (Selfish), how interesting others find
them (Interest), the proportion of time they spend talking about the other person during a conversation
(Talk1), the proportion of time they spend talking about themselves (Talk2), and their propensity to lie
to people (Liar). We calculate the correlation coefficients for each pair of variables and create an R-
matrix. Figure 17.2 shows this matrix. There appear to be two clusters of interrelating variables. First,
the amount that someone talks about the other person during a conversation correlates highly with both
the level of social skills and how interesting the other finds that person, and social skills correlate well
with how interesting others perceive a person to be. These relationships indicate that the better your
social skills, the more interesting and talkative you are likely to be. Second, the amount that people talk
about themselves within a conversation correlates with how selfish they are and how much they lie.
Being selfish also correlates with the degree to which a person tells lies. In short, selfish people are
likely to lie and talk about themselves.
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FIGURE 17.2
An R-matrix

Factor analysis and PCA both aim to reduce this R-matrix down into a smaller set of dimensions. In
factor analysis these dimensions, or factors, are estimated from the data and are believed to reflect
constructs that can’t be measured directly. In this example, there appear to be two clusters that fit the
bill. The first ‘factor’ seems to relate to general sociability, whereas the second ‘factor’ seems to relate
to the way in which a person treats others socially (we might call it Consideration). It might, therefore,
be assumed that popularity depends not only on your ability to socialize, but also on whether you are
inconsiderate towards others. PCA, in contrast, transforms the data into a set of linear components; it
does not estimate unmeasured variables, it just transforms measured ones. Strictly speaking, then, we
shouldn’t interpret components as unmeasured variables. Despite these differences, both techniques
look for variables that correlate highly with a group of other variables, but do not correlate with
variables outside of that group.

- Graphical representation

Factors and components can also be visualized: you can imagine factors as being the axis of a graph
along which we plot variables. The coordinates of variables along each axis represent the strength of
relationship between that variable and each factor. In an ideal world a variable should have a large
coordinate for one of the axes, and small coordinates for any other factors. This scenario would indicate
that this particular variable related to only one factor. Variables that have large coordinates on the same
axis are assumed to measure different aspects of some common underlying dimension. The coordinate
of a variable along a classification axis is known as a factor loading (or component loading). The factor
loading can be thought of as the Pearson correlation between a factor and a variable (see Jane
Superbrain Box 17.1). From what we know about interpreting correlation coefficients (see Section
7.4.2.2) it should be clear that if we square the factor loading we obtain a measure of the substantive
importance of a particular variable to a factor.

Figure 17.3 shows such a plot for the popularity data (in which there were only two factors). The
first thing to notice is that for both factors, the axis line ranges from —1 to 1, which are the outer limits
of a correlation coefficient. The triangles represent the three variables that have high factor loadings
(i.e., a strong relationship) with factor 1 (Sociability: horizontal axis) but have a low correlation with
factor 2 (Consideration: vertical axis). Conversely, the circles represent variables that have high factor
loadings with consideration but low loadings with sociability. This plot shows what we found in the R-
matrix: selfishness, the amount a person talks about themselves and their propensity to lie contribute to
a factor which could be called consideration of others; and how much a person takes an interest in other
people, how interesting they are and their level of social skills contribute to a second factor, sociability.
Of course, if a third factor existed within these data it could be represented by a third axis (creating a 3-
D graph). If more than three factors exist in a data set, then they cannot all be represented by a 2-D plot.
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FIGURE 17.3
Example of a factor plot

- Mathematical representation @

The axes in Figure 17.3, which represent factors, are straight lines and any straight line can be described
mathematically by a familiar equation.

q:xhl@{f"f SELF-TEST What is the equation of a straight line/linear model?

Equation (17.1) reminds us of the equation describing a linear model. A component in PCA can be
described in the same way. You’ll notice that there is no intercept in the equation because the lines
intersect at zero (hence the intercept is zero), and there is also no error term because we are simply
transforming the variables. The bs in the equation represent the loadings.

SMART ALEX ONLY
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Sticking with our example of popularity, we found that there were two components: general sociability
and consideration. We can, therefore, construct an equation that describes each factor in terms of the
variables that have been measured. The equations are as follows:

V=X + by Xy, +o+ B, X

Sociability; = b Talk1; + b,Social Skills; + b;Interest;
+ b, Talk2; + b Selfish; + b, Liar, (17.2)
Consideration; = b Talkl, + b,Social Skills; + byInteresr;
+ byTalk2; + b;Selfish; + b;Liar;

First, notice that the equations are identical in form: they both include all of the variables that were
measured. However, the values of b in the two equations will be different (depending on the relative
importance of each variable to the particular component). In fact, we can replace each value of b with
the coordinate of that variable on the graph in Figure 17.3 (i.e., replace the values of b with the factor
loadings). The resulting equations are as follows:

Y = b Xy + 5, Xy +--+5,X

n g

Sociability; = 0.87Talkl, + 0.9650cial Skills; + 0.92Inrerest; + 0.00Talk2,
— 0. 108¢elfish; + 0.09Liar i
! ! (17.3)

Consideration; = (.01 Talk1, - 0.0350cial Skills; + 0.04Interest; + 0.82Talk2,

+0.755elfish; + 0.70Liar;

Notice that, for the Sociability component, the values of b are high for Talkl, Social Skills and
Interest. For the remaining variables (Talk2, Selfish and Liar) the values of b are very low (close to 0).
This tells us that three of the variables are very important for that component (the ones with high values
of b) and three are very unimportant (the ones with low values of b). We saw that this point is true
because of the way that three variables clustered highly on the factor plot (Figure 17.3). The point to
take on board here is that the factor plot and these equations represent the same thing: the factor
loadings in the plot are simply the b-values in these equations. For the second factor, Consideration,
the opposite pattern can be seen: Talk2, Selfish and Liar all have high values of b, whereas the
remaining three variables have b-values close to 0. In an ideal world, variables would have very high b-
values for one component and very low b-values for all other components.

The factors in factor analysis are not represented in quite the same way as components. Equation
(17.4) shows how a factor is defined: the Greek letters represent matrices containing numbers. If we put
the Greek letters through Andy’s magical translation machine then we can stop worrying about what the
matrices contain and focus on what they represent. In factor analysis, scores on the measured variables
are predicted from the means of those variables plus a person’s scores on the common factors (i.e.,
factors that explain the correlations between variables) multiplied by their factor loadings, plus scores
on any unique factors within the data (factors that cannot explain the correlations between variables).

X=pu+AZ+8

Variables = Variable Means + | Loadings » Common Factor )+ Unique Factor  (17.4)

In a sense, the factor analysis model flips PCA on its head: in PCA we predict components from the
measured variables, but in factor analysis we predict the measured variables from the underlying



factors. For example, psychologists are usually interested in factors, because they’re interested in how
the stuff going on inside people’s heads (the latent variables) affects how they answer the questions (the
measured variables). The other big difference is that, unlike PCA, factor analysis contains an error term
(6 is made up of both scores on unique factors and measurement error). The fact that PCA assumes that
there is no measurement error upsets a lot of people who use factor analysis.

Both factor analysis and PCA are linear models in which loadings are used as weights. In both cases,
these loadings can be expressed as a matrix in which the columns represent each factor and the rows
represent the loadings of each variable on each factor. For the popularity data this matrix would have
two columns (one for each factor) and six rows (one for each variable). This matrix, /A, can be seen
below. It is called the factor matrix or component matrix (if doing principal component analysis) —
see Jane Superbrain Box 17.1 to find out about the different forms of this matrix. Try relating the
elements to the loadings in equation (17.3) to give you an idea of what this matrix represents (in the
case of PCA). For example, the top row represents the first variable, Talkl, which had a loading of .87
for the first factor (Sociability) and a loading of .01 for the second factor (Consideration).

0.87 0.01)
0.96 -0.03
0.92 0.04
A=l 000 082
—-0.10 0.75
_0.09  0.70)

The major assumption in factor analysis (but not PCA) is that these algebraic factors represent real-
world dimensions, the nature of which must be guessed at by inspecting which variables have high
loads on the same factor. So, psychologists might believe that factors represent dimensions of the
psyche, education researchers might believe they represent abilities, and sociologists might believe they
represent races or social classes. However, it is an extremely contentious point: some believe that the
dimensions derived from factor analysis are real only in the statistical sense — and are real-world
fictions.

EVERYBODY

- Factor scores

A factor can be described in terms of the variables measured and their relative importance for that
factor. Therefore, having discovered which factors exist, and estimated the equation that describes them,
it should be possible to estimate a person’s score on a factor, based on their scores for the constituent
variables; these are known as factor scores (or component scores in PCA). For example, if we wanted
to derive a sociability score for a particular person after PCA, we could place their scores on the various



measures into equation (17.3). This method is known as a weighted average and is rarely used because
it is overly simplistic, but it is the easiest way to explain the principle. For example, imagine our six
personality measures range from 1 to 10 and that someone scored the following: Talkl (4), Social
Skills (9), Interest (8), Talk2 (6), Selfish (8), and Liar (6). We could plug these values into equation
(17.3) to get a score for this person’s sociability and their consideration to others (see equation (17.5)).
The resulting scores of 19.22 and 15.21 reflect the degree to which this person is sociable and their
inconsideration towards others, respectively. This person scores higher on sociability than
inconsideration. However, the scales of measurement used will influence the resulting scores, and if
different variables use different measurement scales, then factor scores for different factors cannot be
compared. As such, this method of calculating factor scores is poor and more sophisticated methods are
usually used:

Sociability; = 0.87Talk]; + 0.9650cial Skills; + 0.92Inrerest; + 0.00Talk2,
— (.105elfish; + 0.09Liar,
Sociability; = (0.87 % 4)+(0.96 % 9)+ (0.92 = 8) + (0.00 = &)
~(0.10%8)+(0.09x6)
=19.22

Consideration; = 0.01Talk1; - 0.0350cial Skills, + 0.04Inrerest; + 0.82Talk2,
+0.758elfish; + 0.70Liar,
Consideration, = (0.01x4)—(0.03x9)+(0.04 x8)+(0.82 x&)
+(0.75 x8)+(0.70 < 6)

=15.21 (17.5)

What'’s the difference between a pattern matrix and a structure matrix?

So far I’ve been a bit vague about factor loadings. Sometimes I’ve said that these loadings can be thought of as the correlation between
a variable and a given factor, then at other times I’ve described these loadings in terms of regression coefficients (b). Broadly speaking,
both correlation coefficients and regression coefficients represent the relationship between a variable and linear model, so my
vagueness might not be the evidence of buffoonery that it initially seems. The take-home message is that factor loadings tell us about
the relative contribution that a variable makes to a factor. As long as you understand that much, you’ll be OK.

However, the factor loadings in a given analysis can be both correlation coefficients and regression coefficients. In a few sections’
time we’ll discover that the interpretation of factor analysis is helped greatly by a technique known as rotation. Without going into
details, there are two types: orthogonal and oblique rotation (see Section 17.4.6). When orthogonal rotation is used, any underlying
factors are assumed to be independent, and the factor loading is the correlation between the factor and the variable, but it is also the
regression coefficient. Put another way, the values of the correlation coefficients are the same as the values of the regression
coefficients. However, there are situations in which the underlying factors are assumed to be related or correlated to each other. In these
situations, oblique rotation is used and the resulting correlations between variables and factors will differ from the corresponding
regression coefficients. In this case, there are, in effect, two different sets of factor loadings: the correlation coefficients between each
variable and factor (which are put in the factor structure matrix) and the regression coefficients for each variable on each factor (which
are put in the factor pattern matrix). These coefficients can have quite different interpretations (see Graham, Guthrie, & Thompson,
2003).



There are several sophisticated techniques for calculating factor scores that use factor score coefficients
as weights rather than using the factor loadings. Factor score coefficients can be calculated in several
ways. The simplest way is the regression method. In this method the factor loadings are adjusted to take
account of the initial correlations between variables; in doing so, differences in units of measurement
and variable variances are stabilized.

To obtain the matrix of factor score coefficients (B) we multiply the matrix of factor loadings by the

inverse (R 1) of the original correlation or R-matrix (this is the same process that is used to estimate the
bs in ordinary regression). You might remember from the previous chapter that matrices cannot be
divided (see Section 16.4.4.1). Therefore, the equivalent of dividing by a matrix is to multiply by the
inverse of that matrix. Conceptually speaking, then, by multiplying the matrix of factor loadings by the
inverse of the correlation matrix we are dividing the factor loadings by the correlation coefficients. The
resulting factor score matrix represents the relationship between each variable and each factor, taking
into account the original relationships between pairs of variables. As such, this matrix represents a purer
measure of the unique relationship between variables and factors.

The regression technique ensures that the resulting factor scores have a mean of 0 and a variance
equal to the squared multiple correlation between the estimated factor scores and the true factor values.
However, the downside is that the scores can correlate not only with factors other than the one on which
they are based, but also with other factor scores from a different orthogonal factor.

OLIVER TWISTED

Please Sir, can I have some more ... matrix algebra?

‘The Matrix ...’, enthuses Oliver, ‘... that was a good film. I want to dress in black and glide through the air as though time has stood
still. Maybe the matrix of factor scores is as cool as the film.’ I think you might be disappointed, Oliver, but we’ll give it a shot. The
matrix calculations of factor score coefficients for this example are detailed in the additional material for this chapter on the companion
website. Be afraid, be very afraid ...

To overcome the problems associated with the regression technique, two adjustments have been
proposed: the Bartlett method and the Anderson—Rubin method. The Bartlett method produces scores
that are unbiased and that correlate only with their own factor. The mean and standard deviation of the
scores is the same as for the regression method. However, factor scores can still correlate with each
other. The Anderson-Rubin method is a modification of the Bartlett method that produces factor scores
that are uncorrelated and standardized (they have a mean of O and a standard deviation of 1).
Tabachnick and Fidell (2012) conclude that the Anderson—Rubin method is best when uncorrelated



scores are required but that the regression method is preferred in other circumstances simply because it
is most easily understood. Although it isn’t important that you understand the maths behind any of the
methods, it is important that you understand what the factor scores represent: namely, a composite score
for each individual on a particular factor.

There are several uses of factor scores. First, if the purpose of the factor analysis is to reduce a large set
of data to a smaller subset of measurement variables, then the factor scores tell us an individual’s score
on this subset of measures. Therefore, any further analysis can be carried out on the factor scores rather
than the original data. For example, we could carry out a t-test to see whether females are significantly
more sociable than males using the factor scores for sociability. A second use is in overcoming
collinearity problems in regression. If, following a multiple regression analysis, we have identified
sources of multicollinearity then the interpretation of the analysis is compromised (see Section 8.5.3). In
this situation, we can carry out a PCA on the predictor variables to reduce them to a subset of
uncorrelated factors. The variables causing the multicollinearity will combine to form a component. If
we then rerun the regression but using the component scores as predictor variables then the problem of
multicollinearity should vanish (because the variables are now combined into a single component).
There are ways in which we can ensure that the components are uncorrelated (one way is to use the
Anderson—Rubin method — see above). By using uncorrelated component scores as predictors in the
regression we can be confident that there will be no correlation between predictors — hence, no
multicollinearity.

17.4. Discovering factors

By now, you should have some grasp of what a factor is and what a component is, so we will now delve
into how to find or estimate these mythical beasts.

- Choosing a method

There are several methods for unearthing factors in your data. The method you choose will depend on
what you hope to do with the analysis. Tinsley and Tinsley (1987) give an excellent account of the
different methods available. There are two things to consider: whether you want to generalize the
findings from your sample to a population and whether you are exploring your data or testing a specific
hypothesis. This chapter describes techniques for exploring data using factor analysis. Testing
hypotheses about the structures of latent variables and their relationships to each other requires
considerable complexity and can be done with computer programs such as SPSS’s sister package,
AMOS. Those interested in hypothesis testing techniques (known as confirmatory factor analysis) are
advised to read Pedhazur and Schmelkin (1991: Chapter 23) for an introduction.

Assuming we want to explore our data, we then need to consider whether we want to apply our
findings to the sample collected (descriptive method) or to generalize our findings to a population
(inferential methods). When factor analysis was originally developed it was assumed that it would be



used to explore data to generate future hypotheses. As such, it was assumed that the technique would be
applied to the entire population of interest. Therefore, certain techniques assume that the sample used is
the population, and so results cannot be extrapolated beyond that particular sample. Principal
component analysis is an example of these techniques, as are principal factors analysis (principal axis
factoring) and image covariance analysis (image factoring). Of these, principal component analysis and
principal factors analysis are the preferred methods and usually result in similar solutions (see Section
17.4.3). When these methods are used, conclusions are restricted to the sample collected and
generalization of the results can be achieved only if analysis using different samples reveals the same
factor structure (i.e., cross-validation).

Another approach is to assume that participants are randomly selected and that the variables
measured constitute the population of variables in which we’re interested. By assuming this, it is
possible to generalize from the sample participants to a larger population, but with the caveat that any
findings hold true only for the set of variables measured (because we’ve assumed this set constitutes the
entire population of variables). Techniques in this category include the maximum-likelihood method (see
Harman, 1976) and Kaiser’s alpha factoring. The choice of method depends largely on what
generalizations, if any, you want to make from your data.

- Communality

The idea of what variance is and how it is calculated should, by now, be an old friend with whom you
enjoy tea and biscuits (if not, see Chapter 2). The total variance for a particular variable in the R-matrix
will have two components: some of it will be shared with other variables or measures (common
variance) and some of it will be specific to that measure (unique variance). We tend to use the term
unique variance to refer to variance that can be reliably attributed to only one measure. However, there
is also variance that is specific to one measure but not reliably so; this variance is called error or
random variance. The proportion of common variance present in a variable is known as the
communality. As such, a variable that has no unique variance (or random variance) would have a
communality of 1; a variable that shares none of its variance with any other variable would have a
communality of 0.

In factor analysis we are interested in finding common underlying dimensions within the data and so
we are primarily interested only in the common variance. Therefore, we need to know how much of the
variance present in our data is common variance. This presents us with a logical impasse: to do the
factor analysis we need to know the proportion of common variance present in the data, yet the only
way to find out the extent of the common variance is by carrying out a factor analysis! There are two
ways to approach this problem. The first is to assume that all of the variance is common variance: we
assume that the communality of every variable is 1. By making this assumption we merely transpose
our original data into constituent linear components. This procedure is PCA. Remember that I said
earlier that PCA assumes no measurement error? Well, by setting the communalities to 1, we are
assuming that all variance is common variance (there is no random variance at all).

The second approach is to estimate the amount of common variance by estimating communality
values for each variable. There are various methods of estimating communalities but the most widely
used (including alpha factoring) is to use the squared multiple correlation (SMC) of each variable with
all others. So, for the popularity data, imagine you ran a multiple regression using one measure (Selfish)

as the outcome and the other five measures as predictors: the resulting multiple R? (see Section 8.2.4)




would be used as an estimate of the communality for the variable Selfish. This second approach is used
in factor analysis. These estimates allow the factor analysis to be done. Once the underlying factors
have been extracted, new communalities can be calculated that represent the multiple correlation
between each variable and the factors extracted. Therefore, the communality is a measure of the
proportion of variance explained by the extracted factors.

- Factor analysis or PCA?

I have just explained that there are two approaches to locating underlying dimensions of a data set:
factor analysis and principal component analysis. These techniques differ in the communality estimates
that are used. As I have hinted before, factor analysis derives a mathematical model from which factors
are estimated, whereas PCA decomposes the original data into a set of linear variates (see Dunteman,
1989, Chapter 8, for more detail on the differences between the procedures). As such, only factor
analysis can estimate the underlying factors, and it relies on various assumptions for these estimates to
be accurate. PCA is concerned only with establishing which linear components exist within the data and
how a particular variable might contribute to that component.
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Based on an extensive literature review, Guadagnoli and Velicer (1988) concluded that the solutions
generated from PCA differ little from those derived from factor-analytic techniques. In reality, with 30
or more variables and communalities greater than 0.7 for all variables, different solutions are unlikely;
however, with fewer than 20 variables and any low communalities (< 0.4) differences can occur
(Stevens, 2002).

The flip side of this argument is eloquently described by Cliff (1987) who observed that proponents
of factor analysis ‘insist that components analysis is at best a common factor analysis with some error
added and at worst an unrecognizable hodgepodge of things from which nothing can be determined’ (p.
349). Indeed, feeling is strong on this issue, with some arguing that when PCA is used it should not be
described as a factor analysis (oops!) and that you should not impute substantive meaning to the
resulting components. Ultimately, as I hope to have made clear, they are doing slightly different things.

- Theory behind PCA

The theory behind factor analysis is, frankly, a bit of an arse; an arse tattooed with matrix algebra. No-
one wants to look at matrix algebra when they’re admiring an arse, so we’ll look at the squeezable
buttocks of PCA instead. Principal component analysis works in a very similar way to MANOVA and
discriminant function analysis (see Chapter 16). In MANOVA, various sum of squares and cross-



product matrices were calculated that contained information about the relationships between dependent
variables. I mentioned before that these SSCP matrices can be converted to variance—covariance
matrices, which represent the same information but in averaged form (i.e., taking account of the number
of observations). I also pointed out that by dividing each element by the relevant standard deviation the
variance—covariance matrices becomes standardized. The result is a correlation matrix. In PCA we
usually deal with correlation matrices (although it is possible to analyse a variance—covariance matrix
too), and my point is that this matrix represents the same information as an SSCP matrix in MANOVA.

L
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In MANOVA, because we were comparing groups we ended up looking at the variates or
components of the SSCP matrix that represented the ratio of the model variance to the error variance.
These variates were linear dimensions that separated the groups tested, and we saw that the dependent
variables mapped onto these underlying components. In short, we looked at whether the groups could be
separated by some linear combination of the dependent variables. These variates were found by
calculating the eigenvectors of the SSCP. The number of variates obtained was the smaller of p (the
number of dependent variables) or k — 1 (where k is the number of groups).

In PCA we do much the same thing but using the overall correlation matrix (because we’re not
interested in comparing groups of scores). To simplify things a little, we take a correlation matrix and
calculate the variates. There are no groups of observations, and so the number of variates calculated will
always equal the number of variables measured (p). The variates are described, as for MANOVA, by the
eigenvectors associated with the correlation matrix. The elements of the eigenvectors are the weights of
each variable on the variate. These values are the loadings described earlier (i.e., the b-values in
equation (16.5)). The largest eigenvalue associated with each of the eigenvectors provides a single
indicator of the substantive importance of each component. The basic idea is that we retain components
with relatively large eigenvalues and ignore those with relatively small eigenvalues.

Factor analysis works differently, but there are similarities. Rather than using the correlation matrix,
factor analysis starts by estimating the communalities between variables using the SMC (as described
earlier). It then replaces the diagonal of the correlation matrix (the 1s) with these estimates. Then the
eigenvectors and associated eigenvalues of this matrix are computed. Again, these eigenvalues tell us
about the substantive importance of the factors, and based on them a decision is made about how many
factors to retain. Loadings and communalities are then estimated using only the retained factors.
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- Factor extraction: eigenvalues and the scree plot

In both PCA and factor analysis, not all factors are retained. The process of deciding how many factors
to keep is called extraction. I mentioned above that eigenvalues associated with a variate indicate the
substantive importance of that factor. Therefore, it is logical to retain only factors with large
eigenvalues. This section looks at how we determine whether an eigenvalue is large enough to represent
a meaningful factor.
I/—Flil_:;w many fam;:s;
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Cattell (1966b) suggested plotting each eigenvalue (Y-axis) against the factor with which it is
associated (X-axis). This graph is known as a scree plot (because it looks like a rock face with a pile of
debris, or scree, at the bottom). I mentioned earlier that it is possible to obtain as many factors as there
are variables and that each has an associated eigenvalue. By graphing the eigenvalues, the relative
importance of each factor becomes apparent. Typically there will be a few factors with quite high
eigenvalues, and many factors with relatively low eigenvalues, and so this graph has a very
characteristic shape: there is a sharp descent in the curve followed by a tailing off (see Figure 17.4). The
point of inflexion is where the slope of the line changes dramatically, and Cattell (1966b) suggested
using this point as the cut-off for retaining factors. In Figure 17.4, imagine drawing two straight lines
(the red dashed lines), one summarizing the vertical part of the plot and the other summarizing the
horizontal part. The point of inflexion is the data point at which these two lines meet. You retain only

factors to the left of the point of inflexion (and do not include the factor at the point of inflexion itself),*
so in both examples in Figure 17.4 we would extract two factors because the point of inflexion occurs at
the third data point (factor). With a sample of more than 200 participants, the scree plot provides a fairly
reliable criterion for factor selection (Stevens, 2002).

Although scree plots are very useful, Kaiser (1960) recommended retaining all factors with
eigenvalues greater than 1. This criterion is based on the idea that the eigenvalues represent the amount
of variation explained by a factor and that an eigenvalue of 1 represents a substantial amount of
variation. Jolliffe (1972, 1986) reports that Kaiser’s criterion is too strict and suggested retaining all
factors with eigenvalues more than 0.7. The difference between how many factors are retained using
Kaiser’s methods compared to Jolliffe’s can be dramatic.

You might well wonder how the methods compare. Generally speaking, Kaiser’s criterion
overestimates the number of factors to retain (see Jane Superbrain Box 17.2), but there is some evidence
that it is accurate when the number of variables is less than 30 and the resulting communalities (after
extraction) are all greater than 0.7. Kaiser’s criterion can also be accurate when the sample size exceeds
250 and the average communality is greater than or equal to 0.6. In any other circumstances you are
best advised to use a scree plot, provided the sample size is greater than 200 (see Stevens, 2002, for
more detail). By default, SPSS uses Kaiser’s criterion to extract factors. Therefore, if you use the scree
plot to determine how many factors are retained you may have to rerun the analysis specifying that
SPSS extracts the number of factors you require.



As is often the case in statistics, the three criteria often provide different answers. In these situations
the communalities of the factors need to be considered. Remember that communalities represent the
common variance: if the values are 1 then all common variance is accounted for, and if the values are 0
then no common variance is accounted for. In both PCA and factor analysis we determine how many
factors/components to extract and then re-estimate the communalities. The factors we retain will not
explain all of the variance in the data (because we have discarded some information) and so the
communalities after extraction will always be less than 1. The factors retained do not map perfectly onto
the original variables — they merely reflect the common variance present in the data. If the
communalities represent a loss of information then they are important statistics. The closer the
communalities are to 1, the better our factors are at explaining the original data. It is logical that the
more factors retained, the greater the communalities will be (because less information is discarded);
therefore, the communalities are good indices of whether too few factors have been retained. In fact,
with generalized least-squares factor analysis and maximum-likelihood factor analysis you can get a
statistical measure of the goodness of fit of the factor solution (see the next chapter for more on
goodness-of-fit tests). This basically measures the proportion of variance that the factor solution
explains (so can be thought of as comparing communalities before and after extraction).
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FIGURE 17.4 Examples of scree plots for data that probably have two underlying factors
As a final word of advice, your decision on how many factors to extract will depend also on why

you’re doing the analysis; for example, if you’re trying to overcome multicollinearity problems in
regression, then it might be better to extract too many factors than too few.

- Improving interpretation: factor rotation

Once factors have been extracted, it is possible to calculate the degree to which variables load on these
factors (i.e., calculate the loadings for each variable on each factor). Generally, you will find that most



variables have high loadings on the most important factor and small loadings on all other factors. This
characteristic makes interpretation difficult, and so a technique called factor retation is used to
discriminate between factors. If we visualize our factors as an axis along which variables can be plotted,
then factor rotation effectively rotates these axes such that variables are loaded maximally to only one
factor. Figure 17.5 demonstrates how this process works using an example in which there are only two
factors. Imagine that a sociologist was interested in classifying university lecturers as a demographic
group. She discovered that two underlying dimensions best describe this group: alcoholism and
achievement (go to any academic conference and you’ll see why I chose these dimensions). The first
factor, alcoholism, has a cluster of variables associated with it (green circles), and these could be
measures such as the number of units drunk in a week, dependency and obsessive personality. The
second factor, achievement, also has a cluster of variables associated with it (red circles) and these
could be measures relating to salary, job status and number of research publications. Initially, the full
lines represent the factors, and by looking at the coordinates it should be clear that the red circles have
high loadings for factor 2 (they are a long way up this axis) and medium loadings for factor 1 (they are
not very far up this axis). Conversely, the green circles have high loadings for factor 1 and medium
loadings for factor 2. By rotating the axes (dashed lines), we ensure that both clusters of variables are
intersected by the factor to which they relate most. So, after rotation, the loadings of the variables are
maximized on one factor (the factor that intersects the cluster) and minimized on the remaining
factor(s). If an axis passes through a cluster of variables, then these variables will have a loading of
approximately zero on the opposite axis. If this idea is confusing, then look at Figure 17.5 and think
about the values of the coordinates before and after rotation (this is best achieved by turning the book
when you look at the rotated axes).

How many factors do I retain?

There are fundamental problems with Kaiser’s criterion (Nunnally & Bernstein, 1994). For one thing, an eigenvalue of 1 means
different things in different analyses: with 100 variables it means that a factor explains 1% of the variance, but with 10 variables it
means that a factor explains 10% of the variance. Clearly, these two situations are very different and a single rule that covers both is
inappropriate. An eigenvalue of 1 also means only that the factor explains as much variance as a variable, which rather defeats the
original intention of the analysis to reduce variables down to ‘more substantive’ underlying factors. Consequently, Kaiser’s criterion
often overestimates the number of factors. By this argument Jolliffe’s criterion is even worse (a factor explains less variance than a
variable).

There are more complex ways to determine how many factors to retain, but they are not easy to do in SPSS. The best is probably
parallel analysis (Horn, 1965). Essentially each eigenvalue (which represents the size of the factor) is compared against an eigenvalue
for the corresponding factor in many randomly generated data sets that have the same characteristics as the data being analysed. In
doing so, each eigenvalue is compared to an eigenvalue from a data set that has no underlying factors. This is a bit like asking whether
our observed factor is bigger than a non-existing factor. Factors that are bigger than their ‘random’ counterparts are retained. Of parallel
analysis, the scree plot and Kaiser’s criterion, Kaiser’s criterion is, in general, worst and parallel analysis best (Zwick & Velicer, 1986).
If you want to do parallel analysis then SPSS syntax is available (O’Connor, 2000) from
https://people.ok.ubc.ca/brioconn/nfactors/nfactors.html.
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FIGURE 17.5

Schematic representations of factor rotation. The left graph displays orthogonal rotation, whereas the
right graph displays oblique rotation (see text for more details). 0 is the angle through which the axes
are rotated

There are two types of rotation that can be done. The first is orthogonal rotation, and the left-hand
side of Figure 17.5 represents this method. In Chapter 11 we saw that the term orthogonal means
‘unrelated’, and in this context it means that we rotate factors while keeping them independent, or
unrelated. Before rotation, all factors are independent (i.e., they do not correlate at all) and orthogonal
rotation ensures that the factors remain uncor-related. That is why in Figure 17.5 the axes are turned

while remaining perpendicular.” The other form of rotation is oblique rotation. The difference with
oblique rotation is that the factors are allowed to correlate (hence, the axes of the right-hand diagram of
Figure 17.5 do not remain perpendicular).

The choice of rotation depends on whether there is a good theoretical reason to suppose that the
factors should be related or independent (but see my later comments on this), and also how the variables
cluster on the factors before rotation. On the first point, it is probably quite rare that you would measure
a set of related variables and expect their underlying dimensions to be completely independent. For
example, we wouldn’t expect alcoholism to be completely independent of achievement (after all, high
achievement leads to high stress, which can lead to the drinks cabinet). Therefore, on theoretical
grounds, we should choose oblique rotation. In fact, some argue that oblique rotation is the only
sensible choice for naturally occurring data.

On the second point, Figure 17.5 demonstrates how the positioning of clusters is important in
determining how successful the rotation will be (note the position of the green circles). If an orthogonal
rotation was carried out on the right-hand diagram it would be considerably less successful in
maximizing loadings than the oblique rotation that is displayed.

One approach is to run the analysis using both types of rotation. Pedhazur and Schmelkin (1991)
suggest that if the oblique rotation demonstrates a negligible correlation between the extracted factors
then it is reasonable to use the orthogonally rotated solution. If the oblique rotation reveals a correlated



factor structure, then the orthogonally rotated solution should be discarded. We can check the
relationships between factors using the factor transformation matrix, which is used to convert the
unrotated factor loadings into the rotated ones. Values in this matrix represent the angle through which
the axes have been rotated, or the degree to which factors have been rotated.

SPSS has three methods of orthogonal rotation (varimax, quartimax and equamax) and two methods
of oblique rotation (direct oblimin and promax). These methods differ in how they rotate the factors,
so the resulting output depends on which method you select. Quartimax rotation attempts to maximize
the spread of factor loadings for a variable across all factors. Therefore, interpreting variables becomes
easier. However, this often results in lots of variables loading highly on a single factor. Varimax is the
opposite in that it attempts to maximize the dispersion of loadings within factors. Therefore, it tries to
load a smaller number of variables highly on each factor, resulting in more interpretable clusters of
factors. Equamax is a hybrid of the other two approaches and is reported to behave fairly erratically (see
Tabachnick and Fidell, 2012). For a first analysis, you should probably select varimax because it is a
good general approach that simplifies the interpretation of factors.

The case with oblique rotations is more complex because correlation between factors is permitted.
In the case of direct oblimin, the degree to which factors are allowed to correlate is determined by the
value of a constant called delta. The default value in SPSS is 0, and this ensures that high correlation
between factors is not allowed (this is known as direct quartimin rotation). If you choose to set delta to
greater than O (up to 0.8), then you can expect highly correlated factors; if you set delta less than 0
(down to —0.8) you can expect less correlated factors. The default setting of zero is sensible for most
analyses, and I don’t recommend changing it unless you know what you are doing (see Pedhazur &
Schmelkin, 1991, p. 620). Promax is a faster procedure designed for very large data sets.

In theory, the exact choice of rotation will depend largely on whether or not you think that the
underlying factors should be related. If you expect the factors to be independent then you should choose
one of the orthogonal rotations (I recommend varimax). If, however, there are theoretical grounds for
supposing that your factors might correlate, then direct oblimin should be selected. In practice, there are
strong grounds to believe that orthogonal rotations are a complete nonsense for naturalistic data, and
certainly for any data involving humans (can you think of any psychological construct that is not in any
way correlated with some other psychological construct?) As such, some argue that orthogonal rotations
should never be used.

Once a factor structure has been found, it is important to decide which variables make up which factors.
Earlier I said that the loadings were a gauge of the substantive importance of a given variable to a given
factor. Therefore, it makes sense that we use these values to place variables with factors. It is possible to
assess the statistical significance of a loading (after all, it is simply a correlation coefficient or
regression coefficient); however, it is not as easy as it seems (see Stevens, 2002, p. 393) because the
significance of a factor loading will depend on the sample size. Stevens (2002) produced a table of
critical values against which loadings can be compared. To summarize, he recommends that for a
sample size of 50 a loading of .722 can be considered significant, for 100 the loading should be greater
than .512, for 200 it should be greater than .364, for 300 it should be greater than .298, for 600 it should



be greater than .21, and for 1000 it should be greater than .162. These values are based on an alpha level
of .01 (two-tailed), which allows for the fact that several loadings will need to be tested (see Stevens,
2002, for further detail). Therefore, in very large samples, small loadings can be considered statistically
meaningful.

However, the significance of a loading gives little indication of the substantive importance of a
variable to a factor. We can guage importance by squaring the loading to give an estimate of the amount

of variance in a factor accounted for by a variable (like R?). In this respect Stevens (2002) recommends
interpreting factor loadings with an absolute value greater than .4 (which explain around 16% of the
variance in the variable). Some researchers opt for the lower criterion of .3.

17.5. Research example

One of the uses of factor analysis is to develop questionnaires. I have noticed that a lot of students
become very stressed about SPSS. Therefore, I wanted to design a questionnaire to measure a trait that I
termed ‘SPSS anxiety’. I devised a questionnaire to measure various aspects of students’ anxiety
towards learning SPSS, the SAQ (Figure 17.6). I generated questions based on interviews with anxious
and non-anxious students and came up with 23 possible questions to include. Each question was a
statement followed by a 5-point Likert scale: ‘strongly disagree’, ‘disagree’, ‘neither agree nor
disagree’, ‘agree’ and ‘strongly agree’ (SD, D, N, A, and SA, respectively). The questionnaire was
designed to measure how anxious a given individual would be about learning how to use SPSS. What’s
more, I wanted to know whether anxiety about SPSS could be broken down into specific forms of
anxiety. In other words, what latent variables contribute to anxiety about SPSS?

With a little help from a few lecturer friends I collected 2571 completed questionnaires (at this point
it should become apparent that this example is fictitious!). Load the data file (SAQ.sav) into SPSS and
have a look at the variables and their properties. The first thing to note is that each question (variable) is
represented by a different column. We know that in SPSS, cases (or people’s data) are stored in rows
and variables are stored in columns, so this layout is consistent with past chapters. The second thing to
notice is that there are 23 variables labelled Question_01 to Question_23 and that each has a label
indicating the question. By labelling my variables I can be very clear about what each variable
represents (this is the value of giving your variables full titles rather than just using restrictive column
headings).

OLIVER TWISTED

Please Sir, can I have some more ... questionnaires?

’I’m going to design a questionnaire to measure one’s propensity to pick a pocket or two,” says Oliver, ‘but how would I go about doing
it?’ You’d read the useful information about the dos and don’ts of questionnaire design in the additional material for this chapter on the
companion website, that’s how. Rate how useful it is on a Likert scale from 1 = not useful at all, to 5 = very useful.



- General procedure @

Figure 17.7 shows the general procedure for conducting factor analysis or PCA. First we need to do
some initial screening of the data, then once we embark on the main analysis we need to consider how
many factors to retain and what rotation to use, and if we are using the analysis to look at the factor
structure of a questionnaire then we would want to do a reliability analysis at the end (see Section 17.9).

The SPSS Anxiety Questionnaire (SAQ)
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1. Statistics makes me cry

2. My friends will think I'm stupid for not baing
able to cope with SPSS

3. Standard deviations excite me

4. |dream that Pearson is attacking me with
comelation coefficients

5. |don't understand statistics

6. | have little experence of computers

7. All computers hate me

8. | have never been good at mathematics

8, My friends are batter at statistics than me
10. Computers are useful only for playing games
11. | did badly at mathematics at school

12. Peopla try to tall you that SPSS makes statistics
easier to understand but it doesn't

13. | worry that | will cause imeparable damage because
of my incompetence with computers

14. Computers have minds of their own and
daliberately go wrong whenever | use them

15. Computers are out to get me

16. | weap opanly at the mention of central tendancy
17. lslipinto a coma whenever | sea an equation

18. SPSS always crashes when | try to use it

19. Everybody looks at me when | use SPSS

20. | can't sleep for thoughts of eigenvectors

21. l'wake up under my duvet thinking that | am trapped
under a normal distribution

22. My friends are better at SPSS than | am
23. If | am good at statistics people will think | am a nerd
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FIGURE 17.6 The SPSS anxiety questionnaire (SAQ)

- Before you begin @

17.5.2.1. Sample size @

Correlation coefficients fluctuate from sample to sample, much more so in small samples than in large.
Therefore, the reliability of factor analysis will depend on sample size. Many ‘rules of thumb’ exist for



the ratio of cases to variables; a common one is to have at least 10—15 participants per variable.
Although I’ve heard this rule bandied about on numerous occasions, its empirical basis is unclear
(although Nunnally, 1978, did recommend having 10 times as many participants as variables). Based on
real data, Arrindell and van der Ende (1985) concluded that the cases-to-variables ratio made little
difference to the stability of factor solutions.
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FIGURE 17.7 General procedure for factor analysis and PCA

What does matter is the overall sample size. Test parameters tend to be stable regardless of the
cases-to-variables ratio (Kass & Tinsley, 1979), which is why Tabachnick and Fidell (2012) suggest that
‘it is comforting to have at least 300 cases’ (p. 613) and Comrey and Lee (1992) class 300 as a good
sample size, 100 as poor and 1000 as excellent. However, the picture is a little more complicated than
that. First, the factor loadings matter: Guadagnoli and Velicer (1988) found that if a factor has four or
more loadings greater than .6 then it is reliable regardless of sample size. Furthermore, factors with 10
or more loadings greater than .40 are reliable if the sample size is greater than 150. Finally, factors with
a few low loadings should not be interpreted unless the sample size is 300 or more.

Second, the communalities matter. MacCallum, Widaman, Zhang, and Hong (1999) have shown that
as communalities become lower the importance of sample size increases. With all communalities above
.6, relatively small samples (less than 100) may be perfectly adequate. With communalities in the .5
range, samples between 100 and 200 can be good enough provided there are relatively few factors each
with only a small number of indicator variables. In the worst scenario of low communalities (well below
.5) and a larger number of underlying factors they recommend samples above 500.

What’s clear from this work is that a sample of 300 or more will probably provide a stable factor
solution, but that a wise researcher will measure enough variables to measure adequately all of the
factors that theoretically they would expect to find.

There are measures of sampling adequacy such as the Kaiser—-Meyer—Olkin measure of sampling
adequacy (KMO) (Kaiser, 1970). The KMO can be calculated for individual and multiple variables and
represents the ratio of the squared correlation between variables to the squared partial correlation
between variables. The KMO statistic varies between 0 and 1. A value of 0 indicates that the sum of
partial correlations is large relative to the sum of correlations, indicating diffusion in the pattern of
correlations (hence, factor analysis is likely to be inappropriate). A value close to 1 indicates that
patterns of correlations are relatively compact and so factor analysis should yield distinct and reliable



factors. Kaiser (1974) recommends accepting values greater than .5 as barely acceptable (values below
this should lead you to either collect more data or rethink which variables to include). Hutcheson and
Sofroniou (1999) provide appealing guidelines, especially if you like the letter M:

Marvellous: values in the .90s

Meritorious: values in the .80s

Middling: values in the .70s

Mediocre: values in the .60s

Miserable: values in the .50s

Merde: values below .50. (Actually they used the word ‘unacceptable’ but I don’t like the fact that
it doesn’t start with the letter ‘M’ so I have changed it.)

When I was an undergraduate, my statistics lecturer always used to say ‘if you put garbage in, you get
garbage out’. This saying applies particularly to factor analysis because SPSS will usually find a factor
solution to a set of variables. However, the solution is unlikely to have any real meaning if the variables
analysed are not sensible. The first thing to do when conducting a factor analysis or PCA is to look at
the correlations between variables. There are essentially two potential problems: (1) correlations that are
not high enough; and (2) correlations that are too high. In both cases the remedy is to remove variables
from the analysis. The correlations between variables can be checked using the correlate procedure (see
Chapter 7) to create a correlation matrix of all variables. This matrix can also be created as part of the
factor analysis. We will look at each problem in turn.

If our test questions measure the same underlying dimension (or dimensions) then we would expect
them to correlate with each other (because they are measuring the same thing). Even if questions
measure different aspects of the same things (e.g., we could measure overall anxiety in terms of sub-
components such as worry, intrusive thoughts and physiological arousal), there should still be high
correlations between the variables relating to these sub-traits. We can test for this problem first by
visually scanning the correlation matrix and looking for correlations below about .3 (you could use the
significance of correlations but, given the large sample sizes normally used with factor analysis, this
approach isn’t helpful because even very small correlations will be significant in large samples). If any
variables have lots of correlations below .3 then consider excluding them. It should be immediately
clear that this approach is very subjective: I’ve used fuzzy terms such as ‘about .3’ and ‘lots of’, but I
have to because every data set is different. Analysing data really is a skill, and there’s more to it than
following a recipe book!

For an objective test of whether correlations (overall) are too small we can test for a very extreme
scenario. If the variables in our correlation matrix did not correlate at all, then our correlation matrix
would be an identity matrix (i.e., the off-diagonal components would be zero); so, if the population
correlation matrix resembles an identity matrix then it means that every variable correlates very badly
with all other variables (i.e., all correlation coefficients are close to zero). Bartlett’s test tells us
whether our correlation matrix is significantly different from an identity matrix. Therefore, if it is
significant then it means that the correlations between variables are (overall) significantly different from
zero. The trouble is that because significance depends on sample size (see Section 2.6.1.10) and in
factor analysis sample sizes are very large, Bartlett’s test will nearly always be significant: even when
the correlations between variables are very small indeed. As such, it’s not a useful test (although in the
unlikely event that it is non-significant then you certainly have a big problem).



The opposite problem is when variables correlate too highly. Although mild multicollinearity is not
a problem for factor analysis it is important to avoid extreme multicollinearity (i.e., variables that are
very highly correlated) and singularity (variables that are perfectly correlated). As with regression,
multicollinearity causes problems in factor analysis because it becomes impossible to determine the
unique contribution to a factor of the variables that are highly correlated. Multicollinearity does not
cause a problem for PCA.

Multicollinearity can be detected by looking at the determinant of the R-matrix, denoted R (see Jane
Superbrain Box 17.3). One simple heuristic is that the determinant of the R-matrix should be greater
than 0.00001.

To try to avoid or to correct for multicollinearity you could look through the correlation matrix for
variables that correlate very highly (r > .8) and consider eliminating one of the variables (or more
depending on the extent of the problem) before proceeding. The problem with a heuristic such as this is
that the effect of two variables correlating with r = .9 might be less than the effect of, say, three
variables that all correlate at r = .6. In other words, eliminating such highly correlating variables might
not be getting at the cause of the multicollinearity (Rockwell, 1975). It may take trial and error to work
out which variables are creating the problem.

As well as looking for interrelations, you might ensure that variables have roughly normal distributions
and are measured at an interval level (which Likert scales are, perhaps wrongly, assumed to be). The
assumption of normality is important if you wish to generalize the results of your analysis beyond the
sample collected or do significance tests, but otherwise it’s not. You can do factor analysis on non-
continuous data; for example, if you had dichotomous variables, it’s possible (using syntax) to do the
factor analysis direct from the correlation matrix, but you should construct the correlation matrix from
tetrachoric correlation coefficients (http://www.john-uebersax.com/stat/tetra.htm). The only hassle is
computing the correlations (but see the website for software options).

17.6. Running the analysis

Access the main dialog box (Figure 17.9) by selecting Analyze Dimension Reduction b ., Eactor. Simply
select the variables you want to include in the analysis (remember to exclude any variables that were
identified as problematic during the data screening) and transfer them to the box labelled Variables by
clicking on [ % .

There are several options available, the first of which can be accessed by clicking on [geseisies.
access the dialog box in Figure 17.10. The Univariate descriptives option provides means and standard
deviations for each variable. Most of the other options relate to the correlation matrix of variables (the
R-matrix described earlier). The Coefficients option produces the R-matrix, and selecting the
Significance levels option will include the significance value of each correlation in the R-matrix. You
can also ask for the Determinant of this matrix, which is useful for testing for multicollinearity or
singularity (see Section 17.5.2.2).

KMO and Bartlett’s test of sphericity produces the Kaiser—Meyer—Olkin (see Section 17.5.2.1)
measure of sampling adequacy and Bartlett’s test (see Section 17.5.2.2). We have already seen the
various criteria for adequacy, but with a sample of 2571 we shouldn’t have cause to worry.



http://www.john-uebersax.com/stat/tetra.htm

The Reproduced option produces a correlation matrix based on the model (rather than the real data).
Differences between the matrix based on the model and the matrix based on the observed data indicate
the residuals of the model. SPSS produces these residuals in the lower table of the reproduced matrix,
and we want relatively few of these values to be greater than .05. Luckily, to save us scanning this
matrix, SPSS produces a summary of how many residuals lie above .05. The Reproduced option should
be selected to obtain this summary. The Anti-image option produces an anti-image matrix of
covariances and correlations. These matrices contain measures of sampling adequacy for each variable
along the diagonal and the negatives of the partial correlation/covariances on the off-diagonals. The
diagonal elements, like the KMO measure, should all be greater than .5 at a bare minimum if the sample
is adequate for a given pair of variables. If any pair of variables has a value less than this, consider
dropping one of them from the analysis. The off-diagonal elements should all be very small (close to
zero) in a good model. When you have finished with this dialog box click on (gamnee] to return to the
main dialog box.

What is the determinant?

The determinant of a matrix is an important diagnostic tool in factor analysis, but the question of what it is is not easy to answer
because it has a mathematical definition and I’'m not a mathematician. However, we can bypass the maths and think about the
determinant conceptually. The way that I think of the determinant is as describing the ‘area’ of the data. In Jane Superbrain Box 8.3 we
saw the two diagrams in Figure 17.8. At the time I used these to describe eigenvectors and eigenvalues (which describe the shape of the
data). The determinant is related to eigenvalues and eigenvectors but instead of describing the height and width of the data it describes
the overall area. So, in the left diagram, the determinant of those data would represent the area inside the red dashed ellipse. These
variables have a low correlation so the determinant (area) is big; the biggest value it can be is 1. In the right diagram, the variables are
perfectly correlated or singular, and the ellipse (red dashed line) has been squashed down to basically a straight line. In other words, the
opposite sides of the ellipse have actually met each other and there is no distance between them at all. Put another way, the area, or
determinant, is zero. Therefore, the determinant tells us whether the correlation matrix is singular (determinant is 0), or if all variables
are completely unrelated (determinant is 1), or somewhere in between.

falary (F Milllonny
Lalury [ Milllonash

FIGURE 17.8 Data with a large (left) and small (right) determinant



Eg Factor Analysis

Yariables: TR R
gl Statiscs makes . [B] S
ol Wy friends will thi_. |
ol Standard deviatio..
@ d:lldreamthatpear...
of | dont understan...
;[I | have litthe experi...
ol Al computers nat_ [£

Selection Variable:

FIGURE 17.9
Main dialog box for factor analysis
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Descriptives in factor analysis

- Factor extraction in SPSS @

To access the Extraction dialog box (Figure 17.11), click on | sssien. | in the main dialog box. There are
several ways of conducting a factor analysis (see Section 17.4.1). For our purposes we will use
principal axis factoring (Einclpaladsfacieing = 1), In the Analyze box there are two options: to analyse
the Correlation matrix or to analyse the Covariance matrix (SPSS Tip 17.1). The Display box has two
options within it: to display the Unrotated factor solution and a Scree plot. The scree plot was described
in Section 17.4.5 and is a useful way of establishing how many factors should be retained in an analysis.
The factor solution is useful in assessing the improvement of interpretation due to rotation. If the rotated

solution is little better than the unrotated solution then it is possible that an inappropriate (or less




optimal) rotation method has been used.

_ Correlation or covariance matrix?

You should be happy with the idea that the variance—covariance matrix and correlation matrix are different versions of the same thing.
However, generally the results will differ depending on which matrix you analyse. Analysing the correlation matrix is a useful default
method because it takes the standardized form of the matrix; therefore, if variables have been measured using different scales this will
not affect the analysis. In this example, all variables have been measured using the same measurement scale (a 5-point Likert scale), but
often you will want to analyse variables that use different measurement scales. Analysing the correlation matrix ensures that differences
in measurement scales are accounted for. In addition, even variables measured using the same scale can have very different variances
and this creates problems for PCA. Using the correlation matrix eliminates this problem also.

Having said that, there are statistical reasons for preferring to analyse the covariance matrix: correlation coefficients are not
sensitive to variations in the dispersion of data, whereas the covariance is and so it produces better-defined factor structures (Tinsley &
Tinsley, 1987). However, the covariance matrix should be analysed only when your variables are commensurable.

The Extract box provides options pertaining to the retention of factors. You have the choice of either
selecting factors with eigenvalues greater than a user-specified value or retaining a fixed number of
factors. For the Eigenvalues greater than option the default is Kaiser’s recommendation of eigenvalues
over 1, but you could change this to Jolliffe’s recommendation of 0.7 or any other value you want. It is
probably best to run a primary analysis with the Eigenvalues greater than 1 option selected, select a
scree plot and compare the results. If looking at the scree plot and the eigenvalues over 1 lead you to
retain the same number of factors then continue with the analysis and be happy. If the two criteria give
different results then examine the communalities and decide for yourself which of the two criteria to
believe. If you decide to use the scree plot then you may need to redo the analysis specifying the
number of factors to extract. The number of factors to be extracted can be specified by selecting Fixed
number of factors and then typing the appropriate number in the space provided (e.g., 4).

- Rotation

We have already seen that the interpretability of factors can be improved through rotation (Section
17.4.6). Click on | _reain. | to access the dialog box in Figure 17.12. I’ve discussed the various rotation
options in Section 17.4.6.1, but, to summarize, if there are theoretical grounds to think that the factors
are independent (unrelated) then you should choose one of the orthogonal rotations (I recommend
varimax) but if theory suggests that your factors might correlate then one of the oblique rotations (direct
oblimin or promax) should be selected. In this example I’ve selected varimax.

The dialog box also has options for displaying the Rotated solution and a Loading plot. The rotated
solution is displayed by default and is essential for interpreting the final rotated analysis. The loading
plot will provide a graphical display of each variable plotted against the extracted factors up to a
maximum of three factors (unfortunately SPSS cannot produce four- or five-dimensional graphs). This
plot is basically similar to Figure 17.3 and it uses the factor loading of each variable for each factor.




With two factors these plots are fairly interpretable, and you should hope to see one group of variables
clustered close to the X-axis and a different group of variables clustered around the Y-axis. If all
variables are clustered between the axes, then the rotation has been relatively unsuccessful in
maximizing the loading of a variable on a single factor. With three factors these plots will strain even
the most dedicated visual system, so unless you have only two factors I would probably avoid them.
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FIGURE 17.11
Dialog box for factor extraction

A final option is to set the Maximum Iterations for Convergence (see SPSS Tip 19.1), which
specifies the number of times that the computer will search for an optimal solution. In most
circumstances the default of 25 is adequate; however, if you get an error message about convergence
then increase this value.

&3 Factor Analysis: Rotation (3]
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Display
[ Rotated solution |”| Loading plot(s)

Maximum lterations for Convergence:

FIGURE 17.12
Factor Analysis: Rotation dialog box
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Factor Analysis: Factor Scores dialog box

I Scores

The Factor Scores dialog box (Figure 17.13) can be accessed by clicking on | in the main dialog
box. This option allows you to save factor scores (see Section 17.3.3) for each case in the data editor.
SPSS creates a new column for each factor extracted and then places the factor score for each case
within that column. These scores can then be used for further analysis, or simply to identify groups of
participants who score highly on particular factors. There are three methods of obtaining these scores,
all of which were described in Section 17.3.3. If you want to ensure that factor scores are uncorrelated
then select the Anderson-Rubin method; if correlations between factor scores are acceptable then choose
the Regression method. As a final option, you can ask SPSS to produce the factor score coefficient
matrix. This matrix is used to compute the factor scores, but realistically, we don’t need to see it.

- Options

The Options dialog box can be obtained by clicking on [ gsess. | in the main dialog box (Figure 17.14).
Missing data are a problem for factor analysis just like most other procedures, and SPSS provides a
choice of excluding cases or estimating a value for a case. Tabachnick and Fidell (2012) have an
excellent chapter on data screening (see also the rather less excellent Chapter 5 of this book). Based on
their advice, you should consider the distribution of missing data. If the missing data are non-normally
distributed or the sample size after exclusion is too small then estimation is necessary. SPSS uses the
mean as an estimate (Replace with mean). These procedures lower the standard deviation of variables
and so can lead to significant results that would otherwise be non-significant. Therefore, if missing data
are random, you might consider excluding cases. SPSS allows you to either Exclude cases listwise, in
which case any participant with missing data for any variable is excluded, or to Exclude cases pairwise,
in which case a participant’s data are excluded only from calculations for which a datum is missing (see
SPSS Tip 5.1). If you exclude cases pairwise your estimates can go all over the place, so it’s probably




safest to opt to exclude cases listwise unless this results in a massive loss of data.

The final two options relate to how coefficients are displayed. By default, SPSS will list variables in
the order in which they are entered into the data editor. However, when interpreting factors it is useful to
list variables by size. By selecting Sorted by size, SPSS will order the variables by their factor loadings.
In fact, it does this sorting fairly intelligently so that all of the variables that load highly on the same
factor are displayed together. The second option is to Suppress absolute values less than a specified
value (by default 0.1). This option ensures that factor loadings within +0.1 are not displayed in the
output. Again, this option is useful for interpretation. The default value is probably sensible, but on your
first analysis I recommend changing it either to .3 or to a value reflecting the expected value of a
significant factor loading given the sample size (see Section 17.4.6.2). This will make interpretation
simpler. We know that a loading of .4 is substantial, but so we don’t throw out the baby with the bath
water, setting the value to 0.3 is sensible: we will see not only the substantial loadings but those close to
the cut-off (e.g., a loading of .39). For this example set the value at .3.

@ Factor Analysis: Options @

Missing Values

@ Exclude cases listwise
© Exclude cases pairwise
© Replace with mean

Coefficient Display Format

¥ Sorted by size
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FIGURE 17.14
Factor Analysis: options dialog box

PCA

‘I, Oditi, feel that we are getting closer to finding the hidden truths behind the numbers. Factor analysis allows us to estimate variables
“hidden” within the data. This technique is the very essence of the cult of undiscovered numerical truths. Once we have mastered this
tool we can find out what people are really thinking, even if they don’t know they’re thinking it. We might find that they think that they
think I’m the kind saviour of cute furry gerbils, but that underneath they know the truth ... stare into my lantern to discover factor
analysis.’



17.7. Interpreting output from SPSS 2

Select the same options as I have in the screen diagrams and run a factor analysis with orthogonal
rotation.

g = ‘7“1- Having done this, select the Direct Oblimin option in Figure 17.12 and repeat
%‘* | f the analysis. You should obtain two outputs identical in all respects except that one used an
h

- orthogonal rotation and the other an oblique.

To save space I set the default SPSS options such that each variable is referred to only by its label on
the data editor (e.g., Question_12). On the output you obtain, you should find that the SPSS uses the
value label (the question itself) in all of the output. When using the output refer back to Figure 17.6 to
remind you of what each question was.

When you factor-analyse your own data, you might be unlucky enough to see an error message
about a ‘non-positive definite matrix’ (see SPSS Tip 17.2). A ‘non-positive definite matrix’ sounds a bit
like a collection of depressed numbers that lack certainty about their lives. In some ways it is.

- Preliminary analysis @

The first body of output concerns data screening, assumption testing and sampling adequacy. You’ll find
several large tables (or matrices) that tell us interesting things about our data. If you selected the
Univariate descriptives option in Figure 17.10 then the first table will contain descriptive statistics for
each variable (the mean, standard deviation and number of cases). This table is not included here, but
you should have enough experience to be able to interpret it. The table also includes the number of
missing cases; this summary is a useful way to determine the extent of missing data.

_ Error messages about a ‘non-positive definite matrix’ @

Factor analysis works by looking at your correlation matrix. This matrix has to be ‘positive definite’ for the analysis to work. This term
means lots of horrible things mathematically (e.g., the eigenvalues and determinant of the matrix have to be positive), but, in more
basic terms, factors are like lines floating in space, and eigenvalues measure the length of those lines. If your eigenvalue is negative
then it means that the length of your line/factor is negative too. It’s a bit like me asking you how tall you are, and you responding ‘I’m



minus 175 c¢m tall’. That would be nonsense. If a factor has negative length, then that is nonsense too. When SPSS decomposes the
correlation matrix to look for factors, if it comes across a negative eigenvalue it starts thinking ‘oh dear, I’ve entered some weird
parallel universe where the usual rules of maths no longer apply and things can have negative lengths, and this probably means that
time runs backwards, my mum is my dad, my sister is a dog, my head is a fish, and my toe is a frog called Gerald’. It does the sensible
thing and decides not to proceed. Things like the KMO test and the determinant rely on a positive definite matrix; if you don’t have one
they can’t be computed.

The most likely reason for having a non-positive definite R-matrix is that you have too many variables and too few cases of data,
which makes the correlation matrix a bit unstable. It could also be that you have too many highly correlated items in your matrix
(singularity, for example, tends to mess things up). In any case it means that your data are bad, naughty data, and not to be trusted; if
you let them loose then you have only yourself to blame for the consequences.

Other than cry, there’s not that much you can do to rectify the situation. You could try to limit your items, or selectively remove
items (especially highly correlated ones) to see if that helps. Collecting more data can help too. There are some mathematical fudges
you can do, but they’re not as tasty as vanilla fudge and they are hard to implement.
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OUTPUT 17.1

Output 17.1 shows the R-matrix (i.e., the correlation matrix)® produced using the Coefficients and
Significance levels options in Figure 17.10. The top half of this table contains the Pearson correlation
coefficient between all pairs of questions, whereas the bottom half contains the one-tailed significance
of these coefficients. We can use this correlation matrix to check the pattern of relationships. First, scan
the matrix for correlations greater than .3, and look for variables that only have a small number of
correlations greater than this value. Then scan the correlation coefficients themselves and look for any
greater than .9. If any are found then you should be aware that a problem could arise because of
multicollinearity in the data.

You can also check the determinant of the correlation matrix and, if necessary, eliminate variables
that you think are causing the problem. The determinant is listed at the bottom of the matrix (blink and
you’ll miss it). For these data its value is .001, which is greater than the necessary value of 0.00001 (see
Section 17.6).” To sum up, all questions in the SAQ correlate reasonably well with all others and none
of the correlation coefficients are excessively large; therefore, we won’t eliminate any questions at this
stage.



If you selected the Inverse option in Figure 17.10 you’ll find the inverse of the correlation matrix (R

1 in your output (labelled Inverse of Correlation Matrix). This matrix is used in various calculations
(including factor scores — see Section 17.3.3.1), but in all honesty is useful only if you want some
insight into the calculations that go on in a factor analysis. Most of us have more interesting things to
do, so ignore it.

If you selected the KMO and Bartlett’s test of sphericity and the Anti-image options in Figure 17.10
then your output will contain the Kaiser—-Meyer—Olkin measure of sampling adequacy and Bartlett’s test
of sphericity (Output 17.2) and the anti-image correlation and covariance matrices (an edited version is
in Output 17.3). The anti-image correlation and covariance matrices provide similar information
(remember the relationship between covariance and correlation) and so only the anti-image correlation
matrix need be studied in detail because it is the most informative.

For the KMO statistic the value is .93, which is well above the minimum criterion of .5 and falls
into the range of ‘marvellous’ (see Section 17.5.2.1), so we should be confident that the sample size is
adequate for factor analysis. I mentioned before that KMO can be calculated for multiple and individual
variables. The KMO values for individual variables are produced on the diagonal of the anti-image
correlation matrix (I have highlighted these cells in Output 17.3). As well as checking the overall KMO
statistic, we should examine the diagonal elements of the anti-image correlation matrix: the values
should all be above the bare minimum of .5 (and preferably higher). For these data all values are well
above .5, which is good news. If you find any variables with values below 0.5 then you should consider
excluding them from the analysis (or run the analysis with and without that variable and note the
difference). Removal of a variable affects the KMO statistics, so if you do remove a variable be sure to
re-examine the new anti-image correlation matrix. As for the rest of the anti-image correlation matrix,
the off-diagonal elements represent the partial correlations between variables. For a good factor analysis
we want these correlations to be very small (the smaller, the better). So, as a final check you can look
through to see that the off-diagonal elements are small (they should be for these data).

Bartlett’s measure (Output 17.2) tests the null hypothesis that the original correlation matrix is an
identity matrix. We want this test to be significant (see Section 17.5.2.2). As I mentioned before, given
the large sample sizes usually used in factor analysis this test will almost certainly be significant, and it
is (p < .001). A non-significant test would certainly indicate a massive problem, but this significant
value only really tells us that we don’t have a massive problem, which is nice to know, I suppose.

KMO and Bartlett's Test

Kaiser-Meyer-0Olkin Measure of Sampling

Adeguacy. 930

Bartlett's Test of Approx. Chi-Sguare 19334.492

Sphericity df 553
Sig. 000

OUTPUT 17.2
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OUTPUT 17.3

CRAMMING SAM’S TIPS

¢ Scan the correlation matrix; look for variables that don’t correlate with any other variables, or correlate very highly (r = .9) with
one or more other variables.

o In factor analysis, check that the determinant of this matrix is bigger than 0.00001; if it is then multicollinearity isn’t a problem.

o In the table labelled KMO and Bartlett’s Test the KMO statistic should be greater than .5 as a bare minimum; if it isn’t, collect
more data. You should check the KMO statistic for individual variables by looking at the diagonal of the anti-image matrices
again, these values should be above .5 (this is useful for identifying problematic variables if the overall KMO is unsatisfactory).

o Bartlett’s test of sphericity will usually be significant (the value of Sig. will be less than .05); if it’s not you’ve got a disaster on
your hands.

- Factor extraction

The first part of the factor extraction process is to determine the linear components within the data set
(the eigenvectors) by calculating the eigenvalues of the R-matrix (see Section 17.4.4). We know that
there are as many components (eigenvectors) in the R-matrix as there are variables, but most will be
unimportant. To determine the importance of a particular vector we look at the magnitude of the
associated eigenvalue. We can then apply criteria to determine which factors to retain and which to
discard. By default SPSS uses Kaiser’s criterion of retaining factors with eigenvalues greater than 1 (see
Figure 17.11).

Output 17.4 lists the eigenvalues associated with each factor before extraction, after extraction and
after rotation. Before extraction, SPSS has identified 23 factors within the data set (we know that there
should be as many eigenvectors as there are variables and so there will be as many factors as variables —
see Section 17.4.4). The eigenvalues associated with each factor represent the variance explained by
that particular factor; SPSS also displays the eigenvalue in terms of the percentage of variance
explained (so factor 1 explains 31.696% of total variance). The first few factors explain relatively large
amounts of variance (especially factor 1), whereas subsequent factors explain only small amounts of



variance. SPSS then extracts all factors with eigenvalues greater than 1, which leaves us with four
factors. The eigenvalues associated with these factors are again displayed (and the percentage of
variance explained) in the columns labelled Extraction Sums of Squared Loadings. In the final part of
the table (labelled Rotation Sums of Squared Loadings), the eigenvalues of the factors after rotation are
displayed. Rotation has the effect of optimizing the factor structure, and one consequence for these data
is that the relative importance of the four factors is equalized a bit. Before rotation, factor 1 accounted
for considerably more variance than the remaining three (29.32% compared to 4.90%, 3.54% and
2.71%), but after rotation it accounts for only 13.19% of variance (compared to 12.42%, 8.64% and
6.24%, respectively).

Total Variange Explained

Wnitial Eigerrvalisns Extragton Sums of Squared Loadings Rprtarion Sures of Squared Loadings
Fagnor Total % oof Variarste | Cumulitve % Tetal % of Varanoe | Cumulative ¥ Tetal | % of Variance | Cumlatie %
] T.290 31696 11,656 B 744 29,3213 49121 5.08% 13.188 13.188
F 1.739 7.560 39.256 1128 4.502 34.22% 2.855 12.41% 25.603
i 1.317 5.22% 44,981 B4 1519 37764 1.986 B636 34218
4 P.227 53318 50,317 -FL 2.713 40.477 L4535 6233 A0 477
5 988 4.295 54612
& 8.3 11 1893 SE.504
7 Sk 5.507 &2.007
1 7R3 3404 65410
9 751 1.26% BEETE
1] ATy 5117 71793
i Ga4 2.972 74,765
12 &M 2.911 TTETE
13 &l2 2661 80.337
14 578 2.512 B2.849
15 349 2388 B5.216
16 523 2.275 87511
17 508 210 B9.721
18 Ak 1.982 91.704
19 A4 1.843 93.546
a0 408 1.273 95319
1 iy 1.650 96,969
&2 364 1.583 95552
13 133 1448 100000

OUTPUT 17.4

Output 17.5 (left) shows the table of communalities before and after extraction. Remember that the
communality is the proportion of common variance within a variable (see Section 17.4.1). Factor
analysis starts by estimating the wvariance that is common; therefore, before extraction the
communalities are a kind of best guess. Once factors have been extracted, we have a better idea of how
much variance is, in reality, common. The communalities in the column labelled Extraction reflect this
common variance. So, for example, we can say that 37.3% of the variance associated with question 1 is
common, or shared, variance. Another way to look at these communalities is in terms of the proportion
of variance explained by the underlying factors. Remember that after extraction we have discarded
some factors (in this case we’ve retained only four), so the communalities after extraction represent the
amount of variance in each variable that can be explained by the retained factors.



Communalities Factor Matrix®

Initial Extraction Factor
Question_0] 373 373 1 F 3 4
Question_02 ] 260 Question_18 GR4
Queston_D3 198 472 Question_07 663
Question_04 3RS 419 Question_16 653
Question_05 291 299 Question_13 650
Question_0G A27 554 Cuestion_11 646 .313
Question_07 ATD 489 Question_12 643
Question_08& 490 G465 Cuestion_2 1 B33
Question_09 220 339 Question_17 632 359
Question_10 197 197 Question_L14 628
Question_11 530 G299 Question_04 607
Question_12 424 453 Question_03 -.605
Question_13 451 474 Question_15 559
Queston_14 i93 425 Question_01 557
Question_15 344 322 Question_06& 552 489
Question_1G& 463 A58 Question_08 546 483
Question_17 494 575 Question_05 522
Queston_18 492 544 Question_20 407
Queston_19 209 245 Question_10 404
Question_20 270 i1 Question_19 -.397
Queston_21 454 MEBR Question_09 A6l
Queston_22 67 247 Question_02 372
Question_23 BB 116 Question_2.2
Extraction Method: Principal Axis Question_23

Factoring. Extraction Method: Principal Axis Factoring

a. 4 factors extracted. 11 iterations required.

OUTPUT 17.5

Output 17.5 (right) also shows the factor matrix before rotation. This matrix contains the loadings of
each variable on each factor. By default SPSS displays all loadings; however, we requested that all
loadings less than .3 be suppressed in the output (see Figure 17.14) and so there are blank spaces for
many of the loadings. This matrix is not particularly important for interpretation, but it is interesting to
note that before rotation most variables load highly on the first factor (that is why this factor accounts
for most of the variance in Output 17.4).

Factor analysis is an exploratory tool and so it should be used to guide the researcher to make
various decisions: you shouldn’t leave the computer to make them. One important decision is the
number of factors to extract (Section 17.4.5). By Kaiser’s criterion we should extract four factors
(which is what SPSS has done); however, this criterion is accurate when there are fewer than 30
variables and communalities after extraction are greater than .7, or when the sample size exceeds 250
and the average communality is greater than .6. No communalities exceed .7 (Output 17.5), and the
average communality can be found by adding them up and dividing by the number of communalities
(9.31/23 = .405). So, both of these criteria suggest Kaiser’s rule might be inappropriate for these data.
We could use Jolliffe’s criterion (retain factors with eigenvalues greater than .7), but there is little to
recommend this criterion over Kaiser’s and we’d end up with 10 factors (see Output 17.4). Finally, we
could use the scree plot, which we asked SPSS to produce by using the option in Figure 17.11. This
curve is difficult to interpret because there are points of inflexion at both 3 and 5 factors (Output 17.6).
Therefore, we could probably justify retaining either two or four factors.

So how many factors should we extract? We need to consider that the recommendations for Kaiser’s
criterion are for much smaller samples than we have. Therefore, given our huge sample, and given that
there is some consistency between Kaiser’s criterion and the scree plot, it is reasonable to extract four
factors; however, you might like to rerun the analysis specifying that SPSS extract only two factors (see
Figure 17.11) and compare the results.

Output 17.7 shows an edited version of the reproduced correlation matrix that was requested using
the option in Figure 17.10. The top half of this matrix (labelled Reproduced Correlations) contains the



correlation coefficients between all of the questions based on the factor model. The diagonal of this
matrix contains the communalities after extraction for each variable (you can check the values against
Output 17.5).
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OUTPUT 17.7

The correlations in the reproduced matrix differ from those in the R-matrix because they stem from
the model rather than the observed data. If the model were a perfect fit of the data then we would expect
the reproduced correlation coefficients to be the same as the original correlation coefficients. Therefore,
to assess the fit of the model we can look at the differences between the observed correlations and the
correlations based on the model. For example, if we take the correlation between questions 1 and 2, the
correlation based on the observed data is —.099 (taken from Output 17.1). The correlation based on the
model is —.112, which is slightly higher. We can calculate the difference as follows:

residual =7, % .

residualg o, = (-0.099)-(-0.112)

=0.013



You should notice that this difference is the value quoted in the lower half of the reproduced matrix
(labelled Residual) for questions 1 and 2 (highlighted in blue). Therefore, the lower half of the
reproduced matrix contains the differences between the observed correlation coefficients and the ones
predicted from the model. For a good model these values will all be small. In fact, we want most values
to be less than .05. Rather than scan this huge matrix, SPSS provides a footnote summary, which states
how many residuals have an absolute value greater than .05. For these data there are only 12 residuals
(4%)® that are greater than .05. There are no hard-and-fast rules about what proportion of residuals
should be below .05; however, if more than 50% are greater than .05 you probably have grounds for
concern. For these data we have around 4%, which is certainly nothing to worry about.

CRAMMING SAM’S TIPS

¢ To decide how many factors to extract, look at the table labelled Communalities and the column labelled Extraction. If these
values are all .7 or above and you have less than 30 variables then the SPSS default (Kaiser’s criterion) for extracting factors is
fine. Likewise, if your sample size exceeds 250 and the average of the communalities is .6 or greater then the default option is
fine. Alternatively, with 200 or more participants the scree plot can be used.

e Check the bottom of the table labelled Reproduced Correlations for the percentage of ‘nonredundant residuals with absolute
values greater than 0.05’. This percentage should be less than 50% and the smaller it is, the better.

- Factor rotation

The first analysis I asked you to run was using an orthogonal rotation. However, I also asked you to
rerun the analysis using oblique rotation. In this section the results of both analyses will be reported so
as to highlight the differences between the outputs. This comparison will also be a useful way to show
the circumstances in which one type of rotation might be preferable to another.

Output 17.8 shows the rotated factor matrix (called the rotated component matrix in PCA), which is a
matrix of the factor loadings for each variable on each factor. This matrix contains the same information
as the factor matrix in Output 17.5, except that it is calculated after rotation. There are several things to
consider about the format of this matrix. First, factor loadings less than .3 have not been displayed
because we asked for these loadings to be suppressed using the option in Figure 17.14. Second, the
variables are listed in the order of size of their factor loadings because we asked for the output to be
Sorted by size using the option in Figure 17.14. If this option was not selected the variables would be
listed in the order they appear in the data editor. Finally, for all other parts of the output I suppressed the
variable labels (to save space), but for this output I have used the variable labels to aid interpretation.



Compare this matrix to the unrotated solution (Output 17.5). Before rotation, most variables loaded
highly on the first factor and the remaining factors didn’t really get a look-in. However, the rotation of
the factor structure has clarified things considerably: there are four factors and most variables load very

highly on only one factor.” In cases where a variable loads highly on more than one factor the loading is
typically higher for one factor than another. For example, ‘SPSS always crashes when I try to use it’
loads on both factor 1 and 2, but the loading for factor 2 (.612) is higher than for factor 1 (.366), so it
makes sense to think of it as part of factor 2 more than factor 1. Remember that every variable has a
loading on every factor, it just appears as though they don’t in Output 17.8 because we asked that they
not be printed if they were lower than .3.

The next step is to look at the content of questions that load highly on the same factor to try to
identify common themes. If the mathematical factors represent some real-world construct then common
themes among highly loading questions can help us identify what the construct might be. The questions
that load highly on factor 1 seem to relate to different aspects of statistics; therefore, we might label this
factor fear of statistics. The questions that load highly on factor 2 all seem to relate to using computers
or SPSS. Therefore we might label this factor fear of computers. The three questions that load highly on
factor 3 all seem to relate to mathematics; therefore, we might label this factor fear of mathematics.
Finally, the questions that load highly on factor 4 contain some component of social evaluation from
friends; therefore, we might label this factor peer evaluation. This analysis seems to reveal that the
questionnaire is composed of four subscales: fear of statistics, fear of computers, fear of maths and fear
of negative peer evaluation. There are two possibilities here. The first is that the SAQ failed to measure
what it set out to (namely, SPSS anxiety) but does measure some related constructs. The second is that
these four constructs are sub-components of SPSS anxiety; however, the factor analysis does not
indicate which of these possibilities is true.

Rotated Factor Matrix®

Fagtor

1 £ 3 4
Iwake up under my duvet thinking that | am trapped under 3 normal disonb uton S594
I'weep openly at the menton of central tendency 543
I dream that Pearson is amacking me with commelation coefficeents S27
Pecple ory o Lol you that SPSS makes SIatsnes easier o underitand but it doeen’y 510 398
Standard deviatedng &uCie me = 50% 399
Satsmcs makes me oy S04
I can’t sheep for thowughts of Sighmaciors 465
I don't understand StAnSHCS A6
| harve lisle experience of computerns 753
SP55 adways crashes whan | Ty 0o use i JEE Biz
I gy’ chat | will cause irreparable damage Because of my indmp-stence with
COMPUETs 564
All computers hate me J64 559
Compubers have minds of their own and delberately go wrong whentver | use them 388 485
Computers are useid only for playing games 380
Computers are out o get ma arr
1 hawve mever béen good at imathe matcs 759
I did Badly at mathematics af dchaol G688
158 into a coma whenevtr | 4ee an equation 641
My friends aré béfber at tatistics than me 559
My frignds are Béthér at WPLS than | am ABS
My friends will think I'm $tupid for not being able 1o cope with SP5S A64
Everybody kaokd a1 me when | uie SPES 375
W Im gocd a1 statistkes iy Priend s will tank Nm 3 perd 329

Extraction Method: Principal Axis Factosng
Rotasien Methed: Varimax with Kaiser Nodmalization,

4. Rotation Comverged in 7 Reratons,

OUTPUT 17.8

When an oblique rotation is conducted the factor matrix is split into two matrices: the pattern matrix
and the structure matrix (see Jane Superbrain Box 17.1). For orthogonal rotation these matrices are the



same. The pattern matrix contains the factor loadings and is comparable to the factor matrix that we
interpreted for the orthogonal rotation. The structure matrix takes into account the relationship between
factors (in fact it is a product of the pattern matrix and the matrix containing the correlation coefficients
between factors). Most researchers interpret the pattern matrix, because it is usually simpler; however,
there are situations in which values in the pattern matrix are suppressed because of relationships
between the factors. Therefore, the structure matrix is a useful double-check and Graham et al. (2003)
recommend reporting both (with some useful examples of why this can be important).

For the pattern matrix for these data (Output 17.9) the same four factors seem to have emerged.
Factor 1 seems to represent fear of statistics, factor 2 represents fear of peer evaluation, factor 3
represents fear of computers and factor 4 represents fear of mathematics. The structure matrix (Output
17.10) differs in that shared variance is not ignored. The picture becomes more complicated because,
with the exception of factor 2, several variables load highly on more than one factor. This has occurred
because of the relationship between factors 1 and 3 and between factors 3 and 4. This example should
highlight why the pattern matrix is preferable for interpretative reasons: it contains information about
the unique contribution of a variable to a factor.

The final part of the output is a correlation matrix between the factors (Output 17.11). This matrix
contains the correlation coefficients between factors. As predicted from the structure matrix, factor 2
has fairly small relationships with the other factors, but all other factors have fairly large correlations.
The fact that these correlations exist tells us that the constructs measured can be interrelated. If the
constructs were independent then we would expect oblique rotation to provide an identical solution to
an orthogonal rotation and the factor correlation matrix should be an identity matrix (i.e., all factors
have correlation coefficients of 0). Therefore, this matrix can be used to assess whether it is reasonable
to assume independence between factors: for these data it appears that we cannot assume independence
and so the obliquely rotated solution is probably a better representation of reality.

Pattern Matrix"

Facice

Iwake up under my duvet thinking that | am rapped undér 3 normal distnbution 5316
I €an't dleep for thoughts of &kge et 470
I'weep openly a1 the mention of central tendency 449
I dream that Pearson i3 attacking me with Correlation coeffichents Al
Standard deviations ¢xdite me - 435 24
Crabtiatets makes me ory 432
Pecpht try to bell you that SPSS makes statistics easier to underitand but it doesn’t Al2 (358
| don't wnderitand Stakistics 357
My iritnds are beter at sLathitics than me 559
My friends are betmer at PS5 tham | am ABS
My frbends will think I'm stapid for mot being abke to cope with SP55 453
I F'm gocd at stativtics my friends will think Fm a nerd 145
Everybody looks at me when | use 5P55 %11
| havve limhe expersenoe of Computers BE2
SPS5 always crashes when | try o use it B35
All computers hate me 582

| weerry chat | will cause eréparable damage because of my inompétence with
COMpUbErs 558

Comgputers have minds of their own and deliberately go wiong whenever | use them 473
Comgputers are wseful only for playing games J8E
Computers are out 1o get e 318
| harve: pever been good 3t mathematics -851
I did badly an matheratics an school =734
1 8o into & Coma whenever | Se8 AR equation =675

Extracton Methed: Principal Axis Factonng,
Rotation Method: Oblimin with Kaiser Nermalizaton.

4. Rotation comverged in 17 iterations

OUTPUT 17.9



CRAMMING SAM’S TIPS Interpretation

¢ If you’ve conduced orthogonal rotation then look at the table labelled Rotated Component Matrix. For each variable, note the
factor/component for which the variable has the highest loading (by ‘high’ I mean loadings above .4 when you ignore the plus or
minus sign). Try to make sense of what the factors represent by looking for common themes in the items that load on them.

e If you’ve conducted oblique rotation then do the same as above but for the table labelled Pattern Matrix. Double-check what you
find by doing the same thing for the structure matrix.

Ltructune Matrix

-

1 e 3 4
| wiké up undér my duvet thinking that | am trapped undér a normal distribution BST ATS =391
| wiep opendy At the mention of central tendenty 621 AT3 =469
Sundard deviations exiine me =596 Af6 = A0 369
People try Do tell you that 3PS5 malkoes SO easier 1o understand bul it doesnT 293 i1 = 366
| dream that Pearscn i3 JEacking me with corre laton Codffacients LE6 ATZ - 458
Statistics makes me Cry 552 A07 - 449
I gan't sheep for thoughts of eigemwecion A6
I dign’t understand statistics 492 A22 =374
My friends aré betier af statitics than me ST
My Friends will think M'm stapdd for not being able to cope with PSS 486
My friends are bemer at SPAS than | am A4
Everybody kooks at me when | uie P55 -. 360 ATE
I F'm good At STatands my friend s will thenk Nm a nend 328
| harve Batie experiende of computers 146 =341
SPS5 abways crashes when | try 1o ute i 456 0 =407
All computers hate me ATS BTE =415
mﬁﬂm! Uwdll cause veparable damage Because of my incompetence with 414 B73 - 457
Computers have minds of their own and delberately 9o wrong whenever | use them 489 513 -390
Compubers ane out 1o et me 3184 S10 - 418
Compigers ane usebful anly for playing gamei 437
| have néwer been good AL Mathemanis 314 353 =798
I did badly at mathematics at school 169 ATE - 783
| sz irio 2 coma whentver | $e¢ an Sguation A4 ATE =750

Extracuon Method: Prencepal Axis Factonng
Routicn Method: DBlmin with Kaiser MNormalization.

OUTPUT 17.10

Factor Correlation Matrix

Factor 1 2 3 4

1 1.000 -.296 AR3 -.429
2 -.296 1.000 -.302 .186
3 B3 -.302 1.000 =532
4 - 429 186 -.532 1.000

Extraction Method: Principal Axis Factoring.
Rotation Method: Oblimin with Kaiser
Mormalization.

OUTPUT 17.11

On a theoretical level the dependence between our factors does not cause concern; we might expect
a fairly strong relationship between fear of maths, fear of statistics and fear of computers. Generally, the
less mathematically and technically minded people struggle with statistics. However, we would not
necessarily expect these constructs to correlate strongly with fear of peer evaluation (because this
construct is more socially based). In fact, this factor is the one that correlates the least with all others —
so, on a theoretical level, things have turned out rather well.



- Factor scores

Having reached a suitable solution and rotated that solution, we can look at the factor scores. SPSS will
display the component score matrix B (see Section 17.3.3.1) from which the factor scores are calculated.
I haven’t reproduced this table here because I can’t think of a reason why most people would want to
look at it. In the original analysis we asked for scores to be calculated based on the Anderson—Rubin
method. You will find these scores in the data editor. There should be four new columns of data (one for
each factor) labelled FAC1_1, FAC2_1, FAC3_1 and FAC4 1, respectively. If you asked for factor
scores in the oblique rotation then these scores will appear in the data editor in four other columns
labelled FAC2 1 and so on.

—ﬂ“‘“ » Using what you learnt in Section 8.7.6, use the Case Summaries command to list
?ﬁ‘ | :P the factor scores for these data (given that there are over 2500 cases, you might like to

, restrict the output to the first 10).

£

Case Summaries”

A-R factor A-R factor A-R factor A-R factor

scare 1 for score 2 for score 3 for score 4 for

analysis 1 analysis 1 anahysis 1 analysis 1
1 -1.12974 05050 -1.58646 -.55242
. -.0D4484 - 47739 -.22126 64055
3 15620 - 72240 08299 -.90901
“ F9370 61178 -.79341 -.31779
5 98251 66284 .35819 54788
& -.59551 2.13562 -.53156 -.52313
7 -1.33140 -.19415 08213 B7306
& -91760 -.20011 -.02149 96984
9 L.70800 1.45700 3.03959 659603
10 -37837 - 77093 06181 1.58454
Total M 10 10 10 10

a. Limited to first 10 cases.

OUTPUT 17.12

Output 17.12 shows the factor scores for the first 10 participants. It should be pretty clear that
participant 9 scored highly on factors 1 to 3 and so this person is very anxious about statistics,
computing and maths, but less so about peer evaluation (factor 4). Factor scores can be used in this way
to assess the relative fear of one person compared to another, or we could add the scores up to obtain a
single score for each participant (which we might assume represents SPSS anxiety as a whole). We can
also use factor scores in regression when groups of predictors correlate so highly that there is
multicollinearity. However, people do not normally use factor scores themselves but instead sum scores
on items that they have decided load on the same factor (e.g., create a score for statistics anxiety by
adding up a person’s scores on items 1, 3, 4, 5, 12, 16, 20 and 21).

- Summary




To sum up, the analyses revealed four underlying scales in our questionnaire that may or may not relate
to genuine sub-components of SPSS anxiety. It also seems as though an obliquely rotated solution was
preferred due to the interrelationships between factors. The use of factor analysis is purely exploratory;
it should be used only to guide future hypotheses, or to inform researchers about patterns within data
sets. A great many decisions are left to the researcher using factor analysis and I urge you to make
informed decisions, rather than basing decisions on the outcomes you would like to get. The next
question is whether or not our scale is reliable.

17.8. How to report factor analysis

When reporting factor analysis we should provide our readers with enough information to form an
informed opinion about what we’ve done. We should be clear about our criteria for extracting factors
and the method of rotation used. We should also produce a table of the rotated factor loadings of all
items and flag (in bold) values above a criterion level (I would personally choose .40, but see Section
17.4.6.2). We should also report the percentage of variance that each factor explains and possibly the
eigenvalue too. Table 17.1 shows an example of such a table for the SAQ data (oblique rotation); note
that I have also reported the sample size in the title.

In my opinion, a table of factor loadings and a description of the analysis are a bare minimum. You
could consider (if it’s not too large) including the table of correlations from which someone could
reproduce your analysis (should they want to), and some information on sample size adequacy. For this
example we might write something like this:

A principal axis factor analysis was conducted on the 23 items with oblique rotation (direct
oblimin). The Kaiser—Meyer—Olkin measure verified the sampling adequacy for the analysis,
KMO = .93 (‘marvellous’ according to Hutcheson & Sofroniou, 1999), and all KMO values
for individual items were greater than .77, which is well above the acceptable limit of .5 (Field,
2013). An initial analysis was run to obtain eigenvalues for each factor in the data. Four factors
had eigenvalues over Kaiser’s criterion of 1 and in combination explained 50.32% of the
variance. The scree plot was ambiguous and showed inflexions that would justify retaining
either 2 or 4 factors. We retained 4 factors because of the large sample size and the
convergence of the scree plot and Kaiser’s criterion on this value. Table 17.1 shows the factor
loadings after rotation. The items that cluster on the same factor suggest that factor 1
represents a fear of statistics, factor 2 represents peer evaluation concerns, factor 3 a fear of
computers and factor 4 a fear of maths.

17.9. Reliability analysis

- Measures of reliability



If you’re using factor analysis to validate a questionnaire, it is useful to check the reliability of your
scale.

Thinking back to Chapter 1, what are reliability and test-retest reliability?

/"ﬁn?u do | tell f
my questionnairg \5
E/_is reliable?

Reliability means that a measure (or in this case questionnaire) should consistently reflect the
construct that it is measuring. One way to think of this is that, other things being equal, a person should
get the same score on a questionnaire if they complete it at two different points in time (we have already
discovered that this is called test-retest reliability). So, someone who is terrified of SPSS and who
scores highly on our SAQ should score similarly highly if we tested them a month later (assuming they
hadn’t gone into some kind of SPSS-anxiety therapy in that month). Another way to look at reliability is
to say that two people who are the same in terms of the construct being measured should get the same
score. So, if we took two people who were equally SPSS-phobic, then they should get more or less
identical scores on the SAQ. Likewise, if we took two people who loved SPSS, they should both get
equally low scores. It should be apparent that the SAQ wouldn’t be an accurate measure of SPSS
anxiety if we took someone who loved SPSS and someone who was terrified of it and they got the same
score! In statistical terms, the usual way to look at reliability is based on the idea that individual items
(or sets of items) should produce results consistent with the overall questionnaire. So, if we take
someone scared of SPSS, then their overall score on the SAQ will be high; if the SAQ is reliable then if
we randomly select some items from it the person’s score on those items should also be high.

Summary of exploratory factor analysis results for the SPSS anxiety questionnaire (N =
2571)



Rotated Factor Loadings

Item Fear of Peser Fear of Fear of
Statistics  Evaluaion Computers  Maths

I wake up under my duvet thinking that | am .54 -04 a7 - 06
trapped under a normal distribution
| can't sleep for thoughts of eigenvectors A7 -.14 - 08 - .05
| weep openly at the mention of central tendency A5 - .05 A7 -.18
| dream that Pearson is attacking me with .44 08 18 -.19
corelation coefficients
Standard deviations excite me -.44 32 =05 A0
Statistics makes me cry 43 10 Bl —23
Paople try to tell you that SPSS makes 41 -04 35 m
statistics easier to understand but it doesn’t
I don't understand statistics .36 05 20 -.13
My friends are better at statistics than me =09 56 - 02 -11
My friends are better at SPSS than | am o7 A7 -1 04
My fnends will think 'm stupid for not being -18 A5 04 - .05
able to cope with SPSS
If I'm good at statistics my friends will think I'm 10 35 00 o7
a nerd
Everybody looks at me when | use SPSS =22 34 -8 01
| have itthe experience of computers -22 =01 B 03
SPSS always crashes when | try 1o use it 18 -0 B4 m
All computers hate me 19 - 02 56 -.03
I worry that | will cause ireparable damage 08 - .04 56 -.12
bacause of my incompetence with compulers
Computers have minds of their own and 24 —-02 AT - .03
delberately go wrong whenever | use them
Computers are useful only for playing games 00 ] 38 - .06
Computers are out to get me A1 -.13 a2 -.19
| have never been good al mathematics m 05 =09 -.85
| did badly at mathematics at school -0 -.11 06 =73
| shp into a coma whenever | see an equation 08 02 09 =68

Note: Factor loadings over .40 appear in bold

(<

b
LABCOAT LENI’S REAL RESEARCH 17.1

Worldwide addiction? @

In 2007 it was estimated that around 179 million people worldwide used the Internet. From the increasing popularity (and usefulness)
of the Internet has emerged a serious and recognized problem of internet addiction. To research this construct it’s helpful to be able to
measure it, so Laura Nichols and Richard Nicki developed the Internet Addiction Scale (Nichols & Nicki, 2004). Nichols and Nicki’s
36-item questionnaire contains items such as ‘I have stayed on the Internet longer than I intended to’ and ‘My grades/work have
suffered because of my Internet use’ to which responses are made on a 5-point scale (Never, Rarely, Sometimes, Frequently, Always).
(Incidentally, while researching this topic I encountered an Internet addiction recovery website that offered a whole host of resources
(e.g., questionnaires, online support groups, videos, podcasts, etc.) that would keep you online for ages. It struck me that this was like
having a heroin addiction recovery centre that had a huge pile of free heroin in the reception area.)

The data from 207 people in this study are in the file Nichols & Nicki (2004).sav. The authors dropped two items because they had



low means and variances, and dropped three others because of relatively low correlations with other items. They performed a principal
component analysis on the remaining 31 items. Labcoat Leni wants you to run some descriptive statistics to work out which two items
were dropped for having low means/variances, then inspect a correlation matrix to find the three items that were dropped for having
low correlations. Finally, he wants you to run a principal component analysis on the data. Answers are in the additional material on the
companion website (or look at the original article).

NICHOLS, L. A., & NICKI, R. (2004). PSYCHOLOGY OF ADDICTIVE BEHAVIORS , 18 A , 381-384.

The simplest way to do this in practice is to use split-half reliability. This method splits the scale
set into two randomly selected sets of items. A score for each participant is calculated on each half of
the scale. If a scale is reliable a person’s score on one half of the scale should be the same (or similar) to
their score on the other half. Across several participants, scores from the two halves of the questionnaire
should correlate very highly. The correlation between the two halves is the statistic computed in the
split-half method, with large correlations being a sign of reliability. The problem with this method is
that there are several ways in which a set of data can be randomly split into two and so the results could
be a product of the way in which the data were split. To overcome this problem, Cronbach (1951) came
up with a measure that is loosely equivalent to creating two sets of items in every way possible and
computing the correlation coefficient for each split. The average of these values is equivalent to

Cronbach’s alpha, o, which is the most common measure of scale reliability:'°

N*cov

ZS.“L-N + zcm'm.m (17.6)

This equation may look complicated, but actually isn’t. For each item on our scale we can calculate
two things: the variance within the item, and the covariance between a particular item and any other
item on the scale. Put another way, we can construct a variance—covariance matrix of all items. In this
matrix the diagonal elements will be the variance within a particular item, and the off-diagonal elements
will be covariances between pairs of items. The top half of the equation is simply the number of items
(N) squared multiplied by the average covariance between items (the average of the off-diagonal
elements in the aforementioned variance—covariance matrix). The bottom half is the sum of all the item
variances and item covariances (i.e., the sum of everything in the variance—covariance matrix).

There is a standardized version of the coefficient too, which essentially uses the same equation
except that correlations are used rather than covariances, and the bottom half of the equation uses the
sum of the elements in the correlation matrix of items (including the 1s that appear on the diagonal of
that matrix). The normal alpha is appropriate when items on a scale are summed to produce a single
score for that scale (the standardized alpha is not appropriate in these cases). The standardized alpha is
useful, though, when items on a scale are standardized before being summed.

o=

- Interpreting Cronbach’s a (some cautionary tales)

You’ll often see in books or journal articles, or be told by people, that a value of .7 to .8 is an acceptable
value for Cronbach’s «; values substantially lower indicate an unreliable scale. Kline (1999) notes that
although the generally accepted value of .8 is appropriate for cognitive tests such as intelligence tests,
for ability tests a cut-off point of .7 is more suitable. He goes on to say that when dealing with
psychological constructs, values below even .7 can, realistically, be expected because of the diversity of



the constructs being measured. Some even suggest that in the early stages of research, values as low as
.5 will suffice (Nunnally, 1978). However, there are many reasons not to use these general guidelines,
not least of which is that they distract you from thinking about what the value means within the context
of the research you’re doing (Pedhazur & Schmelkin, 1991).

We’ll now look at some issues in interpreting alpha, which have been discussed particularly well by
Cortina (1993) and Pedhazur and Schmelkin (1991). First, the value of o depends on the number of
items on the scale. You’ll notice that the top half of the equation for a includes the number of items
squared. Therefore, as the number of items on the scale increases, a will increase. As such, it’s possible
to get a large value of a because you have a lot of items on the scale, and not because your scale is
reliable. For example, Cortina (1993) reports data from two scales, both of which have a = .8. The first
scale has only three items, and the average correlation between items was a respectable .57; however,
the second scale had 10 items with an average correlation between these items of a less respectable .28.
Clearly the internal consistency of these scales differs, but according to Cronbach’s a they are both
equally reliable.

Second, people tend to think that alpha measures ‘unidimensionality’, or the extent to which the
scale measures one underlying factor or construct. This is true when there is one factor underlying the
data (see Cortina, 1993), but Grayson (2004) demonstrates that data sets with the same o can have very
different factor structures. He showed that a =.8 can be achieved in a scale with one underlying factor,
with two moderately correlated factors and with two uncorrelated factors. Cortina (1993) has also
shown that with more than 12 items, and fairly high correlations between items (r > .5), a can reach
values around and above .7 (.65 to .84). These results show that a should not be used as a measure of
‘uni-dimensionality’. Indeed, Cronbach (1951) suggested that if several factors exist then the formula
should be applied separately to items relating to different factors. In other words, if your questionnaire
has subscales, o should be applied separately to these subscales.
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The final warning is about items that have a reverse phrasing. For example, in the SAQ there is one
item (question 3) that was phrased the opposite way around to all other items. The item was ‘standard
deviations excite me’. Compare this to any other item and you’ll see it requires the opposite response.
For example, item 1 is ‘statistics make me cry’. If you don’t like statistics then you’ll strongly agree
with this statement and so will get a score of 5 on our scale. For item 3, if you hate statistics then
standard deviations are unlikely to excite you so you’ll strongly disagree and get a score of 1 on the
scale. These reverse-phrased items are important for reducing response bias; participants will need to
pay attention to the questions. For factor analysis, this reverse phrasing doesn’t matter; all that happens
is you get a negative factor loading for any reversed items (in fact, you’ll see that item 3 has a negative
factor loading in Output 17.9). However, these reverse-scored items will affect alpha. To see why, think
about the equation for Cronbach’s a. The top half incorporates the average covariance between items. If
an item is reverse-phrased then it will have a negative relationship with other items, hence the
covariances between this item and other items will be negative. The average covariance is the sum of
covariances divided by the number of covariances, and by including a bunch of negative values we

reduce the sum of covariances, and hence we also reduce Cronbach’s o, because the top half of the



equation gets smaller. In extreme cases, it is even possible to get a negative value for Cronbach’s a,
simply because the magnitude of negative covariances is bigger than the magnitude of positive ones. A
negative Cronbach’s a doesn’t make much sense, but it does happen, and if it does, ask yourself whether
you included any reverse-phrased items.

If you have reverse-phrased items then you also have to reverse the way in which they’re scored
before you conduct reliability analysis. This is quite easy. To take our SAQ data, we have one item
which is currently scored as 1 = strongly disagree, 2 = disagree, 3 = neither, 4 = agree and 5 = strongly
agree. This is fine for items phrased in such a way that agreement indicates statistics anxiety, but for
item 3 (standard deviations excite me), disagreement indicates statistics anxiety. To reflect this
numerically, we need to reverse the scale such that 1 = strongly agree, 2 = agree, 3 = neither, 4 =
disagree and 5 = strongly disagree. In doing so, an anxious person still gets 5 on this item (because
they’d strongly disagree with it).

To reverse the scoring find the maximum value of your response scale (in this case 5) and add 1 to it
(so you get 6 in this case). Then for each person, you take this value and subtract from it the score they
actually got. Therefore, someone who scored 5 originally now scores 6-5 = 1, and someone who scored
1 originally now gets 6—1 = 5. Someone in the middle of the scale with a score of 3 will still get 6-3 =
3. Obviously it would take a long time to do this for each person, but we can get SPSS to do it for us.

—ﬂ“‘“ p! Using what you learnt in Chapter 5, use the compute compute command to
?‘* | :P reverse-score item 3. (Clue: Remember that you are simply changing the variable to 6 minus

, its original value.)

R

- Reliability analysis in SPSS

Let’s test the reliability of the SAQ using the data in SAQ.sav. You should have reverse-scored item 3
(see above), but if you can’t be bothered then load the file SAQ (Item 3 Reversed).sav instead.
Remember also that I said we should conduct reliability analysis on any subscales individually. If we
use the results from our oblique rotation (Output 17.9), then we have four subscales:
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FIGURE 17.15 Main dialog box for reliability analysis.



Subscale 1 (Fear of statistics): items 1, 3, 4, 5, 12, 16, 20, 21
Subscale 2 (Peer evaluation): items 2, 9, 19, 22, 23

Subscale 3 (Fear of computers): items 6, 7, 10, 13, 14, 15, 18
Subscale 4 (Fear of mathematics): items 8, 11, 17

To conduct each reliability analysis on these data you need to select Analze
Scale » il Renaoiy anaisis.. to display the dialog box in Figure 17.15. Select any items from the
list that you want to analyse (to begin with, let’s do the items from the fear of statistics subscale: items
1, 3, 4, 5, 12, 16, 20 and 21) on the left-hand side of the dialog box and drag them to the box labelled
Items (or click on [%). Remember that you can select several items at the same time if you hold down
the Ctrl (Cmd on a Mac) key while you select the variables.

There are several reliability analyses you can run, but the default option is Cronbach’s a. You can
change the method (e.g., to the split-half method) by clicking on [sga =] to reveal a drop-down list of
possibilities, but the default method is a good one to select. Also, it’s a good idea to type the name of
the scale (in this case ‘Fear of Statistics’) into the box labelled Scale label because this will add a header
to the SPSS output with whatever you type in this box: typing a sensible name here will make your
output easier to follow.

If you click on | gasstes | you can access the dialog box in Figure 17.16. In the statistics dialog box
you can select several things, but the one most important for questionnaire reliability is: Scale if item
deleted. This option tells us what the value of o would be if each item were deleted. If our questionnaire
is reliable then we would not expect any one item to greatly affect the overall reliability. In other words,
no item should cause a substantial decrease in a. If it does then you should consider dropping that item
from the questionnaire to improve reliability.
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FIGURE 17.16
Statistics for reliability analysis

The inter-item correlations and covariances (and summaries) provide us with correlation coefficients
and averages for items on our scale. We should already have these values from our factor analysis, so
there is little point in selecting these options. Options like the F test, Friedman chi-square (if your data



are ranked), Cochran chi-square (if your data are dichotomous), and Hotelling’s T-square use these tests
to compare the central tendency of different items on the questionnaire. These tests might be useful to
check that items have similar distributional properties (i.e., the same average value), but given the large
sample sizes you ought to be using for factor analysis, they will inevitably produce significant results
even when only small differences exist between the questionnaire items.

You can also request an intraclass correlation coefficient (ICC). The correlation coefficients that
we encountered earlier in this book measure the relation between variables that measure different
things. For example, the correlation between listening to Deathspell Omega and Satanism involves two
classes of measures: the type of music a person likes and their religious beliefs. Intraclass correlations
measure the relationship between two variables that measure the same thing (i.e., variables within the
same class). Two common uses are in comparing paired data (such as twins) on the same measure, and
assessing the consistency between judges’ ratings of a set of objects (hence the reason why it is found in
the reliability statistics in SPSS). If you’d like to know more, see Section 20.2.1. -

Use the simple set of options in Figure 17.16 to run a basic reliability analysis. Click on |Zaning] to
return to the main dialog box and then click on [ e | to run the analysis.

- Reliability analysis output

Output 17.13 shows the results of this basic reliability analysis for the fear of statistics subscale. The
value of Cronbach’s « is presented in a small table and indicates the overall reliability of the scale.
Bearing in mind what we’ve already noted about effects from the number of items, and how daft it is to
apply general rules, we’re looking for values in the region of about .7 to .8. In this case a is .821, which
is certainly in the region indicated by Kline (1999), and probably indicates good reliability.
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OUTPUT 17.13

In the table labelled Item-Total Statistics the column labelled Corrected Item-Total Correlation has
the correlations between each item and the total score from the questionnaire. In a reliable scale all
items should correlate with the total. So, we’re looking for items that don’t correlate with the overall
score from the scale: if any of these values are less than about .3 then we’ve got problems, because it
means that a particular item does not correlate very well with the scale overall. Items with low
correlations may have to be dropped. For these data, all data have item—total correlations above .3,
which is encouraging.

The values in the column labelled Cronbach’s Alpha if Item Deleted are the values of the overall o if



that item isn’t included in the calculation. As such, they reflect the change in Cronbach’s « that would
be seen if a particular item were deleted. The overall o is .821, and so all values in this column should
be around that same value. We’re actually looking for values of alpha greater than the overall a. If you
think about it, if the deletion of an item increases Cronbach’s o then this means that the deletion of that
item improves reliability. Therefore, any items that have values of « in this column greater than the
overall a may need to be deleted from the scale to improve its reliability. None of the items here would
increase alpha if they were deleted, which is good news. It’s worth noting that if items do need to be
removed at this stage then you should rerun your factor analysis as well to make sure that the deletion of
the item has not affected the factor structure

II\‘I:\_'EW._. - d . o
? - j? Run reliability analyses on the other three subscales.

Just to illustrate the importance of reverse-scoring items before running reliability analysis, Output
17.14 shows the reliability analysis for the fear of statistics subscale but done on the original data (i.e.,
without item 3 being reverse-scored). Note that the overall a is considerably lower (.605 rather than
.821). Also, note that this item has a negative item—total correlation (which is a good way to spot if you
have a potential reverse-scored item in the data that hasn’t been reverse-scored). Finally, note that for
item 3, the o if item deleted is .8. That is, if this item were deleted then the reliability would improve
from about .6 to about .8. This, I hope, illustrates that failing to reverse-score items that have been
phrased oppositely to other items on the scale will mess up your reliability analysis.
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OUTPUT 17.14

Let’s now look at our subscale of peer evaluation. For our subscale of peer evaluation you should
get the output in Output 17.15. The overall reliability is .57, which is nothing to bake a cake for. The
overall a is quite low, and although this is in keeping with what Kline says we should expect for this
kind of social science data, it is well below the statistics subscale and (as we shall see) the other two.
The scale has five items, compared to seven, eight and three on the other scales, so its reliability relative
to the other scales is not going to be dramatically affected by the number of items. The values in the
column labelled Corrected Item-Total Correlation are all around .3, and smaller for item 23. These



results again indicate questionable internal consistency and identify item 23 as a potential problem. The
values in the column labelled Cronbach’s Alpha if Item Deleted indicate that none of the items here
would increase the reliability if they were deleted because all values in this column are less than the
overall reliability of .57. The items on this subscale cover quite diverse themes of peer evaluation, and
this might explain the relative lack of consistency; we probably need to rethink this subscale.

Moving on to the fear of computers subscale, Output 17.16 shows an overall a of .823, which is
pretty good. The values in the column labelled Corrected Item-Total Correlation are again all above .3,
which is also good. The values in the column labelled Cronbach’s Alpha if Item Deleted show that none
of the items would increase the reliability if they were deleted. This indicates that all items are
positively contributing to the overall reliability.
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OUTPUT 17.16

Finally, for the fear of maths subscale, Output 17.17 shows an overall reliability of .819, which
indicates good reliability. The values in the column labelled Corrected Item-Total Correlation are all
above .3, which is good, and the values in the column labelled Cronbach’s Alpha if Item Deleted
indicate that none of the items here would increase the reliability if they were deleted because all values
in this column are less than the overall reliability value.



Iteim-Total Statistics

Scake Comrected Squared Cronbach’s

Scale Mean if Variance if Item-Tota MuRiplhe Alpha i tem
e Delened term Deleted Corre lation Correlation Deleted
| have mever been good at mathematics 4,72 2.470 684 470 T40
| did badly ar mathe matics at school 4.70 2.453 682 467 742

| sk into a coma whenever | see an
&0 LA TN 4.49 2.504 B52 425 772

Reliabdlity Statistics

Cronbach’s
Alpha Based
an
Cronbach's Standardized
Alpha Rems N of fems
A19 219 3

OUTPUT 17.17

CRAMMING SAM’S TIPS

Reliability analysis is used to measure the consistency of a measure.

Remember to reverse-score any items that were reverse-phrased on the original questionnaire before you run the analysis.

Run separate reliability analyses for all subscales of your questionnaire.

Cronbach’s a indicates the overall reliability of a questionnaire, and values around .8 are good (or .7 for ability tests and the

like).

e The Cronbach’s Alpha if Item Deleted column tells you whether removing an item will improve the overall reliability. Values
greater than the overall reliability indicate that removing that item will improve the overall reliability of the scale. Look for items
that dramatically increase the value of o and remove them.

e If you remove items, rerun your factor analysis to check that the factor structure still holds.

17.10. How to report reliability analysis

You can report the reliabilities in the text using the symbol o and remembering that because Cronbach’s
a can’t be larger than 1 we drop the zero before the decimal place (if we are following APA practice):

The fear of computers, fear of statistics and fear of maths subscales of the SAQ all had high
reliabilities, all Cronbach’s o = .82. However, the fear of negative peer evaluation subscale had
relatively low reliability, Cronbach’s a = .57.

Fi
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However, the most common way to report reliability analysis when it follows a factor analysis is to
report the values of Cronbach’s a as part of the table of factor loadings. For example, in Table 17.1
notice that in the last row of the table I quoted the value of Cronbach’s « for each subscale in turn.

17.11. Brian’s attempt to woo Jane
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FIGURE 17.17
What Brian learnt from this chapter

17.12. What next? @

At the age of 23 I took it upon myself to become a living homage to the digestive system. I furiously
devoured articles and books on statistics (some of them I even understood), I mentally chewed over
them, I broke them down with the stomach acid of my intellect, I stripped them of their goodness and
nutrients, I compacted them down, and after about two years I forced the smelly brown remnants of
those intellectual meals out of me in the form of a book. I was mentally exhausted at the end of it. ‘It’s a
good job I’ll never have to do that again’, I thought.

17.13. Key terms that I’ve discovered

Alpha factoring
Anderson—Rubin method
Common factor
Common variance
Communality
Component matrix

Confirmatory factor analysis



Cronbach’s a

Direct oblimin

Extraction

Equamax

Factor analysis

Factor loading

Factor matrix

Factor scores

Factor transformation matrix, A
Intraclass correlation coefficient (ICC)
Kaiser’s criterion

Latent variable
Kaiser—-Meyer—Olkin (KMO) measure of sampling adequacy
Oblique rotation

Orthogonal rotation

Pattern matrix

Principal component analysis (PCA)
Promax

Quartimax

Random variance

Rotation

Scree plot

Singularity

Split-half reliability

Structure matrix

Unique factor

Unique variance

Varimax

e Task 1: Rerun the analysis in this chapter using principal component analysis and compare the
results to those in the chapter. (Set the iterations to convergence to 30.)

e Task 2: The University of Sussex constantly seeks to employ the best people possible as lecturers.
They wanted to revise the ‘Teaching of Statistics for Scientific Experiments’ (TOSSE)
questionnaire, which is based on Bland’s theory that says that good research methods lecturers
should have: (1) a profound love of statistics; (2) an enthusiasm for experimental design; (3) a love
of teaching; and (4) a complete absence of normal interpersonal skills. These characteristics should
be related (i.e., correlated). The University revised this questionnaire to become the ‘Teaching of
Statistics for Scientific Experiments — Revised’ (TOSSE-R). They gave this questionnaire to 239



research methods lecturers around the world to see if it supported Bland’s theory. The
questionnaire is in Figure 17.18, and the data are in TOSSE-R.sav. Conduct a factor analysis (with
appropriate rotation) and interpret the factor structure.

e Task 3: Dr Sian Williams (University of Brighton) devised a questionnaire to measure
organizational ability. She predicted five factors to do with organizational ability: (1) preference
for organization; (2) goal achievement; (3) planning approach; (4) acceptance of delays; and (5)
preference for routine. These dimensions are theoretically independent. Williams’ questionnaire
contains 28 items using a 7-point Likert scale (1 = strongly disagree, 4 = neither, 7 = strongly
agree). She gave it to 239 people. Run a principal component analysis on the data in Williams.sav.

e Task 4: Zibarras, Port, and Woods (2008) looked at the relationship between personality and
creativity. They used the Hogan Development Survey (HDS), which measures 11 dysfunctional
dispositions of employed adults: being volatile, mistrustful, cautious, detached, passive-
aggressive, arrogant, manipulative, dramatic, eccentric, perfectionist, and dependent. Zibarras
et al. wanted to reduce these 11 traits and, based on parallel analysis, found that they could be
reduced to three components. They ran a principal component analysis with varimax rotation.
Repeat this analysis (Zibarras et al. (2008).sav) to see which personality dimensions clustered
together (see page 210 of the original paper).

Answers can be found on the companion website.
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FIGURE 17.18
The TOSSE-R questionnaire
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069. Newbury Park, CA: Sage. (This monograph is quite high level but comprehensive.)
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the theory of factor analysis.)
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1 She didn’t say ‘rabbit’, but she did say a word that describes what rabbits do a lot; it begins with an ‘f’ and the publishers think that it
will offend you.

2 PCA is not the same as factor analysis. This doesn’t stop idiots like me from discussing them as though they are. I tend to focus on the
similarities between the techniques, which will reduce some statisticians (and psychologists) to tears. I'm banking on these people not
needing to read this book, so I’ll take my chances because I think it’s easier for you if I give you a general sense of what the procedures do
and not obsess too much about their differences. Once you have got the basics under your belt, feel free to obsess about their differences
and complain to all of your friends about how awful the book by that imbecile Field is ...

3 This matrix is called an R-matrix, or R, because it contains correlation coefficients and r usually denotes Pearson’s correlation (see
Chapter 7) — the r turns into a capital letter when it denotes a matrix.

4 In his original paper Cattell advised including the factor at the point of inflexion as well, because it represents an error factor, or ‘garbage
can’ as he put it. However, Thurstone argued that it is better to retain too few than too many factors, and in practice the ‘garbage can’ factor
is rarely retained.

> This term means that the axes are at right angles to one another.
6 To save space only columns for the first five and last five questions in the questionnaire are included.
7 Actually the determinant of this matrix is 0.0005271; I have no idea why SPSS reports this value as .001.

8 SPSS has a weird rounding habit here. There are 253 unique correlation coefficients in the table and 12 residuals greater than .05, which
is (12/253) x 100 = 4.74%. SPSS seems to round down to the nearest whole percentage value for some reason.

9 The suppression of loadings less than .3 and ordering variables by their loading size makes this pattern really easy to see.

10 Although this is the easiest way to conceptualize Cronbach’s, o, whether or not it is exactly equal to the average of all possible split-half
reliabilities depends on exactly how you calculate the split-half reliability (see the glossary for computational details). If you use the
Spearman—Brown formula, which takes no account of item standard deviations, then Cronbach’s will be equal to the average split-half
reliability only when the item standard deviations are equal; otherwise a will be smaller than the average. However, if you use a formula
for split-half reliability that does account for item standard deviations (such as Flanagan, 1937; Rulon, 1939) then o will always equal the
average split-half reliability (see Cortina, 1993).
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