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FIGURE	17.1
In	my	office	during	my	Ph.D.,	probably	preparing	some	teaching	–	I	had	quite	long	hair	back	then
because	it	hadn’t	started	falling	out	at	that	point

17.1.	What	will	this	chapter	tell	me?	①

Having	 failed	 to	become	a	 rock	 star,	 I	went	 to	university	 and	eventually	 ended	up	doing	a	Ph.D.	 (in
Psychology)	at	the	University	of	Sussex.	Like	many	postgraduates,	I	taught	to	survive.	I	was	allocated
to	 second-year	 undergraduate	 statistics.	 I	 was	 very	 shy	 at	 the	 time,	 and	 I	 didn’t	 have	 a	 clue	 about
statistics,	so	standing	in	front	of	a	room	full	of	strangers	and	talking	to	them	about	ANOVA	was	about
as	 appealing	 as	 dislocating	 my	 knees	 and	 running	 a	 marathon.	 I	 obsessively	 prepared	 for	 my	 first
session	so	that	it	would	go	well;	I	created	handouts,	I	invented	examples,	I	rehearsed	what	I	would	say.	I
went	 in	 terrified	 but	 knowing	 that	 if	 preparation	was	 any	 predictor	 of	 success	 then	 I	would	 be	OK.
About	half	way	through	one	of	 the	students	rose	majestically	from	her	chair.	An	aura	of	bright	white
light	surrounded	her	and	she	appeared	to	me	as	though	walking	through	dry	ice.	I	guessed	that	she	had
been	chosen	by	her	peers	to	impart	a	message	of	gratitude	for	the	hours	of	preparation	I	had	done	and
the	skill	with	which	I	was	unclouding	their	brains	of	statistical	mysteries.	She	stopped	inches	away	from
me.	 She	 looked	 into	 my	 eyes	 and	 mine	 raced	 around	 the	 floor	 looking	 for	 the	 reassurance	 of	 my
shoelaces.	‘No	one	in	this	room	has	a	rabbit1	clue	what	you’re	going	on	about’,	she	spat	before	storming
out.	 Scales	 have	 not	 been	 invented	 yet	 to	measure	 how	much	 I	wished	 I’d	 run	 the	 dislocated-knees
marathon	 that	morning.	 To	 this	 day	 I	 have	 intrusive	 thoughts	 about	 students	 in	my	 lectures	walking
zombie-like	 towards	 the	 front	 of	 the	 lecture	 theatre	 chanting	 ‘No	 one	 knows	 what	 you’re	 going	 on
about’	before	devouring	my	brain	in	a	rabid	feeding	frenzy.

The	aftermath	of	this	trauma	is	that	I	threw	myself	into	trying	to	be	the	best	teacher	in	the	universe.	I
wrote	 detailed	 handouts	 and	 started	 using	 wacky	 examples.	 Based	 on	 these	 I	 was	 signed	 up	 by	 a
publisher	 to	write	a	book.	This	book.	At	 the	age	of	23	I	didn’t	 realize	 that	 this	was	academic	suicide



(really,	textbooks	take	a	long	time	to	write	and	they	are	not	at	all	valued	compared	to	research	articles),
and	 I	 also	 didn’t	 realize	 the	 emotional	 pain	 I	was	 about	 to	 inflict	 on	myself.	 I	 soon	 discovered	 that
writing	a	statistics	book	was	like	doing	a	factor	analysis:	in	factor	analysis	we	take	a	lot	of	information
(variables)	 and	 SPSS	 effortlessly	 reduces	 this	 mass	 of	 confusion	 into	 a	 simple	 message	 (fewer
variables).	 SPSS	 does	 this	 in	 a	 few	 seconds.	 Similarly,	my	 younger	 self	 took	 a	mass	 of	 information
about	 statistics	 that	 I	 didn’t	 understand	 and	 filtered	 it	 down	 into	 a	 simple	 message	 that	 I	 could
understand:	 I	 became	 a	 living,	 breathing	 factor	 analysis	…	except	 that,	 unlike	SPSS,	 it	 took	me	 two
years	and	some	considerable	effort.

17.2.	When	to	use	factor	analysis	②

In	 science	 we	 often	 need	 to	 measure	 things	 that	 cannot	 be	 measured	 directly	 (so-called	 latent
variables).	For	example,	management	researchers	might	be	interested	in	measuring	‘burnout’,	which	is
when	 someone	who	has	 been	working	 very	 hard	 on	 a	 project	 (a	 book,	 for	 example)	 for	 a	 prolonged
period	 of	 time	 suddenly	 finds	 himself	 devoid	 of	 motivation,	 inspiration,	 and	 wants	 to	 repeatedly
headbutt	their	computer,	screaming	‘please,	Mike,	unlock	the	door,	let	me	out	of	the	basement,	I	need	to
feel	 the	soft	warmth	of	sunlight	on	my	skin’.	You	can’t	measure	burnout	directly:	 it	has	many	facets.
However,	you	can	measure	different	aspects	of	burnout:	you	could	get	some	idea	of	motivation,	stress
levels,	whether	the	person	has	any	new	ideas	and	so	on.	Having	done	this,	it	would	be	helpful	to	know
whether	 these	facets	reflect	a	single	variable.	Put	another	way,	are	 these	different	measures	driven	by
the	same	underlying	variable?

This	chapter	explores	factor	analysis	and	principal	component	analysis	 (PCA)	–	 techniques	for
identifying	clusters	of	variables.	These	techniques	have	three	main	uses:	(1)	to	understand	the	structure
of	a	set	of	variables	(e.g.,	Spearman	and	Thurstone	used	factor	analysis	to	try	to	understand	the	structure
of	the	latent	variable	‘intelligence’);	(2)	to	construct	a	questionnaire	to	measure	an	underlying	variable
(e.g.,	 you	might	 design	 a	 questionnaire	 to	measure	 burnout);	 and	 (3)	 to	 reduce	 a	 data	 set	 to	 a	more
manageable	 size	while	 retaining	as	much	of	 the	original	 information	as	possible	 (e.g.,	 factor	analysis
can	be	used	 to	 solve	 the	problem	of	multicollinearity	 that	we	discovered	 in	Chapter	8	 by	 combining
variables	that	are	collinear).

There	are	numerous	examples	of	the	use	of	factor	analysis	in	science.	Most	readers	will	be	familiar
with	 the	 extroversion−introversion	 and	 neuroticism	 traits	 measured	 by	 Eysenck	 (1953).	 Most	 other
personality	questionnaires	are	also	based	on	factor	analysis	–	notably	Cattell’s	 (1966a)	16	personality
factors	questionnaire	–	and	these	inventories	are	frequently	used	for	recruiting	purposes	in	industry	(and
even	by	some	religious	groups).	Economists,	for	example,	might	also	use	factor	analysis	to	see	whether
productivity,	 profits	 and	 workforce	 can	 be	 reduced	 down	 to	 an	 underlying	 dimension	 of	 company
growth,	and	Jeremy	Miles	told	me	of	a	biochemist	who	used	it	to	analyse	urine	samples.

Both	 factor	 analysis	 and	 PCA	 aim	 to	 reduce	 a	 set	 of	 variables	 into	 a	 smaller	 set	 of	 dimensions
(called	 ‘factors’	 in	 factor	 analysis	 and	 ‘components’	 in	 PCA).	 To	 non-statisticians,	 like	 me,	 the
differences	 between	 a	 component	 and	 a	 factor	 are	 difficult	 to	 conceptualize	 (they	 are	 both	 linear
models),	and	the	differences	are	hidden	away	in	the	maths	behind	the	techniques.2	However,	there	are
important	 differences	between	 the	 techniques,	which	 I’ll	 discuss	 in	due	 course.	Most	 of	 the	practical
issues	are	the	same	regardless	of	whether	you	do	factor	analysis	or	PCA,	so	once	the	theory	is	over	you
can	apply	any	advice	I	give	to	either	factor	analysis	or	PCA.



17.3.	Factors	and	components	②

If	we	measure	 several	 variables,	 or	 ask	 someone	 several	 questions	 about	 themselves,	 the	 correlation
between	 each	 pair	 of	 variables	 (or	 questions)	 can	 be	 arranged	 in	 a	 table	 (just	 like	 the	 output	 from	 a
correlation	analysis	as	seen	in	Chapter	7).	This	table	is	sometimes	called	an	R-matrix,	just	to	scare	you.
The	diagonal	elements	of	an	R-matrix	are	all	ones	because	each	variable	will	correlate	perfectly	with
itself.	 The	 off-diagonal	 elements	 are	 the	 correlation	 coefficients	 between	 pairs	 of	 variables,	 or
questions.3	 Factor	 analysis	 attempts	 to	 achieve	 parsimony	 by	 explaining	 the	 maximum	 amount	 of
common	variance	 in	 a	 correlation	matrix	using	 the	 smallest	number	of	 explanatory	constructs.	These
‘explanatory	constructs’	are	known	as	factors	(or	latent	variables)	in	factor	analysis,	and	they	represent
clusters	variables	 that	correlate	highly	with	each	other.	PCA	tries	 to	explain	 the	maximum	amount	of
total	variance	(not	just	common	variance)	in	a	correlation	matrix	by	transforming	the	original	variables
into	linear	components.

Imagine	 that	 we	wanted	 to	measure	 different	 aspects	 of	 what	might	make	 a	 person	 popular.	We
could	 administer	 several	 measures	 that	 we	 believe	 tap	 different	 aspects	 of	 popularity.	 So,	 we	might
measure	a	person’s	social	skills	(Social	Skills),	 their	selfishness	 (Selfish),	how	interesting	others	 find
them	(Interest),	the	proportion	of	time	they	spend	talking	about	the	other	person	during	a	conversation
(Talk1),	the	proportion	of	time	they	spend	talking	about	themselves	(Talk2),	and	their	propensity	to	lie
to	people	 (Liar).	We	calculate	 the	correlation	coefficients	 for	each	pair	of	variables	and	create	an	R-
matrix.	Figure	17.2	shows	this	matrix.	There	appear	to	be	two	clusters	of	interrelating	variables.	First,
the	amount	that	someone	talks	about	the	other	person	during	a	conversation	correlates	highly	with	both
the	level	of	social	skills	and	how	interesting	the	other	finds	that	person,	and	social	skills	correlate	well
with	 how	 interesting	others	 perceive	 a	 person	 to	 be.	These	 relationships	 indicate	 that	 the	 better	 your
social	skills,	the	more	interesting	and	talkative	you	are	likely	to	be.	Second,	the	amount	that	people	talk
about	 themselves	within	 a	 conversation	 correlates	with	 how	 selfish	 they	 are	 and	 how	much	 they	 lie.
Being	 selfish	 also	 correlates	with	 the	 degree	 to	which	 a	 person	 tells	 lies.	 In	 short,	 selfish	 people	 are
likely	to	lie	and	talk	about	themselves.



FIGURE	17.2
An	R-matrix

Factor	analysis	and	PCA	both	aim	to	reduce	this	R-matrix	down	into	a	smaller	set	of	dimensions.	In
factor	 analysis	 these	 dimensions,	 or	 factors,	 are	 estimated	 from	 the	 data	 and	 are	 believed	 to	 reflect
constructs	 that	can’t	be	measured	directly.	In	this	example,	 there	appear	 to	be	two	clusters	 that	fit	 the
bill.	The	first	‘factor’	seems	to	relate	to	general	sociability,	whereas	the	second	‘factor’	seems	to	relate
to	the	way	in	which	a	person	treats	others	socially	(we	might	call	it	Consideration).	It	might,	therefore,
be	assumed	that	popularity	depends	not	only	on	your	ability	to	socialize,	but	also	on	whether	you	are
inconsiderate	 towards	others.	PCA,	in	contrast,	 transforms	the	data	 into	a	set	of	 linear	components;	 it
does	not	estimate	unmeasured	variables,	 it	 just	 transforms	measured	ones.	Strictly	speaking,	 then,	we
shouldn’t	 interpret	 components	 as	 unmeasured	 variables.	 Despite	 these	 differences,	 both	 techniques
look	 for	 variables	 that	 correlate	 highly	 with	 a	 group	 of	 other	 variables,	 but	 do	 not	 correlate	 with
variables	outside	of	that	group.

17.3.1.	Graphical	representation	②

Factors	and	components	can	also	be	visualized:	you	can	 imagine	 factors	as	being	 the	axis	of	a	graph
along	which	we	plot	variables.	The	coordinates	of	variables	along	each	axis	 represent	 the	strength	of
relationship	 between	 that	 variable	 and	 each	 factor.	 In	 an	 ideal	 world	 a	 variable	 should	 have	 a	 large
coordinate	for	one	of	the	axes,	and	small	coordinates	for	any	other	factors.	This	scenario	would	indicate
that	this	particular	variable	related	to	only	one	factor.	Variables	that	have	large	coordinates	on	the	same
axis	are	assumed	to	measure	different	aspects	of	some	common	underlying	dimension.	The	coordinate
of	a	variable	along	a	classification	axis	is	known	as	a	factor	loading	(or	component	loading).	The	factor
loading	 can	 be	 thought	 of	 as	 the	 Pearson	 correlation	 between	 a	 factor	 and	 a	 variable	 (see	 Jane
Superbrain	 Box	 17.1).	 From	 what	 we	 know	 about	 interpreting	 correlation	 coefficients	 (see	 Section
7.4.2.2)	 it	should	be	clear	 that	 if	we	square	 the	factor	 loading	we	obtain	a	measure	of	 the	substantive
importance	of	a	particular	variable	to	a	factor.

Figure	17.3	shows	such	a	plot	for	 the	popularity	data	(in	which	there	were	only	 two	factors).	The
first	thing	to	notice	is	that	for	both	factors,	the	axis	line	ranges	from	−1	to	1,	which	are	the	outer	limits
of	 a	 correlation	 coefficient.	The	 triangles	 represent	 the	 three	 variables	 that	 have	 high	 factor	 loadings
(i.e.,	a	strong	relationship)	with	factor	1	(Sociability:	horizontal	axis)	but	have	a	low	correlation	with
factor	2	(Consideration:	vertical	axis).	Conversely,	the	circles	represent	variables	that	have	high	factor
loadings	with	consideration	but	low	loadings	with	sociability.	This	plot	shows	what	we	found	in	the	R-
matrix:	selfishness,	the	amount	a	person	talks	about	themselves	and	their	propensity	to	lie	contribute	to
a	factor	which	could	be	called	consideration	of	others;	and	how	much	a	person	takes	an	interest	in	other
people,	how	interesting	they	are	and	their	level	of	social	skills	contribute	to	a	second	factor,	sociability.
Of	course,	if	a	third	factor	existed	within	these	data	it	could	be	represented	by	a	third	axis	(creating	a	3-
D	graph).	If	more	than	three	factors	exist	in	a	data	set,	then	they	cannot	all	be	represented	by	a	2-D	plot.



FIGURE	17.3
Example	of	a	factor	plot

17.3.2.	Mathematical	representation	②

The	axes	in	Figure	17.3,	which	represent	factors,	are	straight	lines	and	any	straight	line	can	be	described
mathematically	by	a	familiar	equation.
	

SELF-TEST	What	is	the	equation	of	a	straight	line/linear	model?

Equation	 (17.1)	 reminds	 us	 of	 the	 equation	 describing	 a	 linear	model.	A	 component	 in	 PCA	 can	 be
described	 in	 the	 same	way.	You’ll	 notice	 that	 there	 is	 no	 intercept	 in	 the	 equation	 because	 the	 lines
intersect	 at	 zero	 (hence	 the	 intercept	 is	 zero),	 and	 there	 is	 also	 no	 error	 term	because	we	 are	 simply
transforming	the	variables.	The	bs	in	the	equation	represent	the	loadings.

SMART	ALEX	ONLY



Sticking	with	our	example	of	popularity,	we	found	that	there	were	two	components:	general	sociability
and	consideration.	We	can,	 therefore,	construct	an	equation	 that	describes	each	 factor	 in	 terms	of	 the
variables	that	have	been	measured.	The	equations	are	as	follows:

First,	 notice	 that	 the	 equations	 are	 identical	 in	 form:	 they	 both	 include	 all	 of	 the	 variables	 that	were
measured.	However,	 the	values	of	b	 in	 the	 two	equations	will	be	different	 (depending	on	 the	 relative
importance	of	each	variable	to	the	particular	component).	In	fact,	we	can	replace	each	value	of	b	with
the	coordinate	of	that	variable	on	the	graph	in	Figure	17.3	(i.e.,	replace	the	values	of	b	with	the	factor
loadings).	The	resulting	equations	are	as	follows:

Notice	 that,	 for	 the	 Sociability	 component,	 the	 values	 of	 b	 are	 high	 for	 Talk1,	 Social	 Skills	 and
Interest.	For	the	remaining	variables	(Talk2,	Selfish	and	Liar)	the	values	of	b	are	very	low	(close	to	0).
This	tells	us	that	three	of	the	variables	are	very	important	for	that	component	(the	ones	with	high	values
of	b)	 and	 three	 are	 very	 unimportant	 (the	 ones	with	 low	values	 of	b).	We	 saw	 that	 this	 point	 is	 true
because	of	 the	way	that	 three	variables	clustered	highly	on	the	factor	plot	(Figure	17.3).	The	point	 to
take	 on	 board	 here	 is	 that	 the	 factor	 plot	 and	 these	 equations	 represent	 the	 same	 thing:	 the	 factor
loadings	in	 the	plot	are	simply	the	b-values	 in	 these	equations.	For	 the	second	factor,	Consideration,
the	 opposite	 pattern	 can	 be	 seen:	 Talk2,	 Selfish	 and	Liar	 all	 have	 high	 values	 of	 b,	 whereas	 the
remaining	three	variables	have	b-values	close	to	0.	In	an	ideal	world,	variables	would	have	very	high	b-
values	for	one	component	and	very	low	b-values	for	all	other	components.

The	 factors	 in	 factor	analysis	are	not	 represented	 in	quite	 the	same	way	as	components.	Equation
(17.4)	shows	how	a	factor	is	defined:	the	Greek	letters	represent	matrices	containing	numbers.	If	we	put
the	Greek	letters	through	Andy’s	magical	translation	machine	then	we	can	stop	worrying	about	what	the
matrices	contain	and	focus	on	what	they	represent.	In	factor	analysis,	scores	on	the	measured	variables
are	 predicted	 from	 the	means	of	 those	variables	 plus	 a	 person’s	 scores	 on	 the	common	factors	 (i.e.,
factors	that	explain	the	correlations	between	variables)	multiplied	by	their	factor	loadings,	plus	scores
on	any	unique	factors	within	the	data	(factors	that	cannot	explain	the	correlations	between	variables).

In	a	sense,	the	factor	analysis	model	flips	PCA	on	its	head:	in	PCA	we	predict	components	from	the
measured	 variables,	 but	 in	 factor	 analysis	 we	 predict	 the	 measured	 variables	 from	 the	 underlying



factors.	For	example,	psychologists	are	usually	interested	in	factors,	because	they’re	interested	in	how
the	stuff	going	on	inside	people’s	heads	(the	latent	variables)	affects	how	they	answer	the	questions	(the
measured	variables).	The	other	big	difference	is	that,	unlike	PCA,	factor	analysis	contains	an	error	term
(δ	is	made	up	of	both	scores	on	unique	factors	and	measurement	error).	The	fact	that	PCA	assumes	that
there	is	no	measurement	error	upsets	a	lot	of	people	who	use	factor	analysis.

Both	factor	analysis	and	PCA	are	linear	models	in	which	loadings	are	used	as	weights.	In	both	cases,
these	 loadings	can	be	expressed	as	a	matrix	 in	which	 the	columns	represent	each	factor	and	 the	rows
represent	 the	loadings	of	each	variable	on	each	factor.	For	 the	popularity	data	 this	matrix	would	have
two	columns	 (one	 for	 each	 factor)	 and	 six	 rows	 (one	 for	 each	variable).	This	matrix,	Λ,	 can	be	 seen
below.	It	 is	called	the	factor	matrix	or	component	matrix	 (if	doing	principal	component	analysis)	–
see	 Jane	 Superbrain	 Box	 17.1	 to	 find	 out	 about	 the	 different	 forms	 of	 this	 matrix.	 Try	 relating	 the
elements	 to	 the	 loadings	 in	equation	(17.3)	 to	give	you	an	 idea	of	what	 this	matrix	 represents	 (in	 the
case	of	PCA).	For	example,	the	top	row	represents	the	first	variable,	Talk1,	which	had	a	loading	of	.87
for	the	first	factor	(Sociability)	and	a	loading	of	.01	for	the	second	factor	(Consideration).

The	major	 assumption	 in	 factor	 analysis	 (but	 not	 PCA)	 is	 that	 these	 algebraic	 factors	 represent	 real-
world	 dimensions,	 the	 nature	 of	which	must	 be	guessed	 at	 by	 inspecting	which	 variables	 have	 high
loads	 on	 the	 same	 factor.	 So,	 psychologists	 might	 believe	 that	 factors	 represent	 dimensions	 of	 the
psyche,	education	researchers	might	believe	they	represent	abilities,	and	sociologists	might	believe	they
represent	races	or	social	classes.	However,	 it	 is	an	extremely	contentious	point:	some	believe	 that	 the
dimensions	 derived	 from	 factor	 analysis	 are	 real	 only	 in	 the	 statistical	 sense	 –	 and	 are	 real-world
fictions.

EVERYBODY

17.3.3.	Factor	scores	②

A	 factor	 can	 be	 described	 in	 terms	 of	 the	 variables	 measured	 and	 their	 relative	 importance	 for	 that
factor.	Therefore,	having	discovered	which	factors	exist,	and	estimated	the	equation	that	describes	them,
it	should	be	possible	to	estimate	a	person’s	score	on	a	factor,	based	on	their	scores	for	the	constituent
variables;	these	are	known	as	factor	scores	(or	component	scores	in	PCA).	For	example,	if	we	wanted
to	derive	a	sociability	score	for	a	particular	person	after	PCA,	we	could	place	their	scores	on	the	various



measures	into	equation	(17.3).	This	method	is	known	as	a	weighted	average	and	is	rarely	used	because
it	 is	overly	simplistic,	but	 it	 is	 the	easiest	way	 to	explain	 the	principle.	For	example,	 imagine	our	six
personality	 measures	 range	 from	 1	 to	 10	 and	 that	 someone	 scored	 the	 following:	Talk1	 (4),	 Social
Skills	(9),	Interest	(8),	Talk2	(6),	Selfish	(8),	and	Liar	(6).	We	could	plug	these	values	into	equation
(17.3)	to	get	a	score	for	this	person’s	sociability	and	their	consideration	to	others	(see	equation	(17.5)).
The	 resulting	 scores	 of	 19.22	 and	15.21	 reflect	 the	 degree	 to	which	 this	 person	 is	 sociable	 and	 their
inconsideration	 towards	 others,	 respectively.	 This	 person	 scores	 higher	 on	 sociability	 than
inconsideration.	However,	 the	 scales	 of	measurement	 used	will	 influence	 the	 resulting	 scores,	 and	 if
different	variables	use	different	measurement	scales,	 then	factor	scores	 for	different	 factors	cannot	be
compared.	As	such,	this	method	of	calculating	factor	scores	is	poor	and	more	sophisticated	methods	are
usually	used:

JANE	SUPERBRAIN	17.1

What’s	the	difference	between	a	pattern	matrix	and	a	structure	matrix?	③
So	far	I’ve	been	a	bit	vague	about	factor	loadings.	Sometimes	I’ve	said	that	these	loadings	can	be	thought	of	as	the	correlation	between
a	variable	and	a	given	factor,	then	at	other	times	I’ve	described	these	loadings	in	terms	of	regression	coefficients	(b).	Broadly	speaking,
both	 correlation	 coefficients	 and	 regression	 coefficients	 represent	 the	 relationship	 between	 a	 variable	 and	 linear	 model,	 so	 my
vagueness	might	not	be	the	evidence	of	buffoonery	that	it	initially	seems.	The	take-home	message	is	that	factor	loadings	tell	us	about
the	relative	contribution	that	a	variable	makes	to	a	factor.	As	long	as	you	understand	that	much,	you’ll	be	OK.

However,	the	factor	loadings	in	a	given	analysis	can	be	both	correlation	coefficients	and	regression	coefficients.	In	a	few	sections’
time	we’ll	discover	 that	 the	 interpretation	of	 factor	analysis	 is	helped	greatly	by	a	 technique	known	as	rotation.	Without	going	 into
details,	 there	are	 two	 types:	orthogonal	and	oblique	 rotation	 (see	Section	17.4.6).	When	orthogonal	 rotation	 is	used,	 any	underlying
factors	are	assumed	to	be	independent,	and	the	factor	loading	is	 the	correlation	between	the	factor	and	the	variable,	but	it	 is	also	the
regression	 coefficient.	 Put	 another	 way,	 the	 values	 of	 the	 correlation	 coefficients	 are	 the	 same	 as	 the	 values	 of	 the	 regression
coefficients.	However,	there	are	situations	in	which	the	underlying	factors	are	assumed	to	be	related	or	correlated	to	each	other.	In	these
situations,	 oblique	 rotation	 is	 used	 and	 the	 resulting	 correlations	 between	 variables	 and	 factors	 will	 differ	 from	 the	 corresponding
regression	coefficients.	In	this	case,	there	are,	in	effect,	two	different	sets	of	factor	loadings:	the	correlation	coefficients	between	each
variable	and	factor	(which	are	put	in	the	factor	structure	matrix)	and	the	regression	coefficients	for	each	variable	on	each	factor	(which
are	put	 in	 the	 factor	pattern	matrix).	These	coefficients	can	have	quite	different	 interpretations	 (see	Graham,	Guthrie,	&	Thompson,
2003).



17.3.3.1.	The	regression	method	④

There	are	several	sophisticated	techniques	for	calculating	factor	scores	that	use	factor	score	coefficients
as	weights	rather	 than	using	the	factor	 loadings.	Factor	score	coefficients	can	be	calculated	 in	several
ways.	The	simplest	way	is	the	regression	method.	In	this	method	the	factor	loadings	are	adjusted	to	take
account	of	 the	 initial	correlations	between	variables;	 in	doing	so,	differences	 in	units	of	measurement
and	variable	variances	are	stabilized.

To	obtain	the	matrix	of	factor	score	coefficients	(B)	we	multiply	the	matrix	of	factor	loadings	by	the
inverse	(R−1)	of	the	original	correlation	or	R-matrix	(this	is	the	same	process	that	is	used	to	estimate	the
bs	 in	 ordinary	 regression).	 You	 might	 remember	 from	 the	 previous	 chapter	 that	 matrices	 cannot	 be
divided	(see	Section	16.4.4.1).	Therefore,	 the	equivalent	of	dividing	by	a	matrix	 is	 to	multiply	by	 the
inverse	of	that	matrix.	Conceptually	speaking,	then,	by	multiplying	the	matrix	of	factor	loadings	by	the
inverse	of	the	correlation	matrix	we	are	dividing	the	factor	loadings	by	the	correlation	coefficients.	The
resulting	factor	score	matrix	 represents	 the	relationship	between	each	variable	and	each	factor,	 taking
into	account	the	original	relationships	between	pairs	of	variables.	As	such,	this	matrix	represents	a	purer
measure	of	the	unique	relationship	between	variables	and	factors.

The	regression	 technique	ensures	 that	 the	resulting	factor	scores	have	a	mean	of	0	and	a	variance
equal	to	the	squared	multiple	correlation	between	the	estimated	factor	scores	and	the	true	factor	values.
However,	the	downside	is	that	the	scores	can	correlate	not	only	with	factors	other	than	the	one	on	which
they	are	based,	but	also	with	other	factor	scores	from	a	different	orthogonal	factor.

OLIVER	TWISTED

Please	Sir,	can	I	have	some	more	…	matrix	algebra?

‘The	Matrix	…’,	enthuses	Oliver,	‘…	that	was	a	good	film.	I	want	to	dress	in	black	and	glide	through	the	air	as	though	time	has	stood
still.	Maybe	the	matrix	of	factor	scores	is	as	cool	as	the	film.’	I	think	you	might	be	disappointed,	Oliver,	but	we’ll	give	it	a	shot.	The
matrix	calculations	of	factor	score	coefficients	for	this	example	are	detailed	in	the	additional	material	for	this	chapter	on	the	companion
website.	Be	afraid,	be	very	afraid	…

17.3.3.2.	Other	methods	②

To	 overcome	 the	 problems	 associated	 with	 the	 regression	 technique,	 two	 adjustments	 have	 been
proposed:	the	Bartlett	method	and	the	Anderson–Rubin	method.	The	Bartlett	method	produces	scores
that	are	unbiased	and	that	correlate	only	with	their	own	factor.	The	mean	and	standard	deviation	of	the
scores	 is	 the	 same	 as	 for	 the	 regression	method.	However,	 factor	 scores	 can	 still	 correlate	with	 each
other.	The	Anderson-Rubin	method	is	a	modification	of	the	Bartlett	method	that	produces	factor	scores
that	 are	 uncorrelated	 and	 standardized	 (they	 have	 a	 mean	 of	 0	 and	 a	 standard	 deviation	 of	 1).
Tabachnick	 and	 Fidell	 (2012)	 conclude	 that	 the	 Anderson–Rubin	 method	 is	 best	 when	 uncorrelated



scores	are	required	but	that	the	regression	method	is	preferred	in	other	circumstances	simply	because	it
is	most	easily	understood.	Although	it	isn’t	important	that	you	understand	the	maths	behind	any	of	the
methods,	it	is	important	that	you	understand	what	the	factor	scores	represent:	namely,	a	composite	score
for	each	individual	on	a	particular	factor.

17.3.3.3.	Uses	of	factor	scores	②

There	are	several	uses	of	factor	scores.	First,	if	the	purpose	of	the	factor	analysis	is	to	reduce	a	large	set
of	data	to	a	smaller	subset	of	measurement	variables,	then	the	factor	scores	tell	us	an	individual’s	score
on	this	subset	of	measures.	Therefore,	any	further	analysis	can	be	carried	out	on	the	factor	scores	rather
than	the	original	data.	For	example,	we	could	carry	out	a	t-test	to	see	whether	females	are	significantly
more	 sociable	 than	 males	 using	 the	 factor	 scores	 for	 sociability.	 A	 second	 use	 is	 in	 overcoming
collinearity	 problems	 in	 regression.	 If,	 following	 a	 multiple	 regression	 analysis,	 we	 have	 identified
sources	of	multicollinearity	then	the	interpretation	of	the	analysis	is	compromised	(see	Section	8.5.3).	In
this	 situation,	 we	 can	 carry	 out	 a	 PCA	 on	 the	 predictor	 variables	 to	 reduce	 them	 to	 a	 subset	 of
uncorrelated	factors.	The	variables	causing	the	multicollinearity	will	combine	to	form	a	component.	If
we	then	rerun	the	regression	but	using	the	component	scores	as	predictor	variables	then	the	problem	of
multicollinearity	 should	 vanish	 (because	 the	 variables	 are	 now	 combined	 into	 a	 single	 component).
There	are	ways	 in	which	we	can	ensure	 that	 the	components	 are	uncorrelated	 (one	way	 is	 to	use	 the
Anderson–Rubin	method	 –	 see	 above).	By	 using	 uncorrelated	 component	 scores	 as	 predictors	 in	 the
regression	 we	 can	 be	 confident	 that	 there	 will	 be	 no	 correlation	 between	 predictors	 –	 hence,	 no
multicollinearity.

17.4.	Discovering	factors	②

By	now,	you	should	have	some	grasp	of	what	a	factor	is	and	what	a	component	is,	so	we	will	now	delve
into	how	to	find	or	estimate	these	mythical	beasts.

17.4.1.	Choosing	a	method	②

There	are	several	methods	for	unearthing	factors	in	your	data.	The	method	you	choose	will	depend	on
what	 you	 hope	 to	 do	with	 the	 analysis.	 Tinsley	 and	Tinsley	 (1987)	 give	 an	 excellent	 account	 of	 the
different	 methods	 available.	 There	 are	 two	 things	 to	 consider:	 whether	 you	 want	 to	 generalize	 the
findings	from	your	sample	to	a	population	and	whether	you	are	exploring	your	data	or	testing	a	specific
hypothesis.	 This	 chapter	 describes	 techniques	 for	 exploring	 data	 using	 factor	 analysis.	 Testing
hypotheses	 about	 the	 structures	 of	 latent	 variables	 and	 their	 relationships	 to	 each	 other	 requires
considerable	 complexity	 and	 can	 be	 done	 with	 computer	 programs	 such	 as	 SPSS’s	 sister	 package,
AMOS.	Those	interested	in	hypothesis	testing	techniques	(known	as	confirmatory	factor	analysis)	are
advised	to	read	Pedhazur	and	Schmelkin	(1991:	Chapter	23)	for	an	introduction.

Assuming	we	want	 to	 explore	 our	 data,	we	 then	 need	 to	 consider	whether	we	want	 to	 apply	 our
findings	 to	 the	 sample	 collected	 (descriptive	 method)	 or	 to	 generalize	 our	 findings	 to	 a	 population
(inferential	methods).	When	factor	analysis	was	originally	developed	 it	was	assumed	that	 it	would	be



used	to	explore	data	to	generate	future	hypotheses.	As	such,	it	was	assumed	that	the	technique	would	be
applied	to	the	entire	population	of	interest.	Therefore,	certain	techniques	assume	that	the	sample	used	is
the	 population,	 and	 so	 results	 cannot	 be	 extrapolated	 beyond	 that	 particular	 sample.	 Principal
component	analysis	is	an	example	of	these	techniques,	as	are	principal	factors	analysis	(principal	axis
factoring)	and	image	covariance	analysis	(image	factoring).	Of	these,	principal	component	analysis	and
principal	factors	analysis	are	the	preferred	methods	and	usually	result	in	similar	solutions	(see	Section
17.4.3).	 When	 these	 methods	 are	 used,	 conclusions	 are	 restricted	 to	 the	 sample	 collected	 and
generalization	of	the	results	can	be	achieved	only	if	analysis	using	different	samples	reveals	the	same
factor	structure	(i.e.,	cross-validation).

Another	 approach	 is	 to	 assume	 that	 participants	 are	 randomly	 selected	 and	 that	 the	 variables
measured	 constitute	 the	 population	 of	 variables	 in	 which	 we’re	 interested.	 By	 assuming	 this,	 it	 is
possible	to	generalize	from	the	sample	participants	to	a	larger	population,	but	with	the	caveat	that	any
findings	hold	true	only	for	the	set	of	variables	measured	(because	we’ve	assumed	this	set	constitutes	the
entire	population	of	variables).	Techniques	in	this	category	include	the	maximum-likelihood	method	(see
Harman,	 1976)	 and	 Kaiser’s	 alpha	 factoring.	 The	 choice	 of	 method	 depends	 largely	 on	 what
generalizations,	if	any,	you	want	to	make	from	your	data.

17.4.2.	Communality	②

The	idea	of	what	variance	is	and	how	it	is	calculated	should,	by	now,	be	an	old	friend	with	whom	you
enjoy	tea	and	biscuits	(if	not,	see	Chapter	2).	The	total	variance	for	a	particular	variable	in	the	R-matrix
will	 have	 two	 components:	 some	 of	 it	 will	 be	 shared	 with	 other	 variables	 or	 measures	 (common
variance)	and	some	of	it	will	be	specific	to	that	measure	(unique	variance).	We	tend	to	use	the	term
unique	variance	to	refer	to	variance	that	can	be	reliably	attributed	to	only	one	measure.	However,	there
is	 also	 variance	 that	 is	 specific	 to	 one	 measure	 but	 not	 reliably	 so;	 this	 variance	 is	 called	 error	 or
random	 variance.	 The	 proportion	 of	 common	 variance	 present	 in	 a	 variable	 is	 known	 as	 the
communality.	 As	 such,	 a	 variable	 that	 has	 no	 unique	 variance	 (or	 random	 variance)	 would	 have	 a
communality	 of	 1;	 a	 variable	 that	 shares	 none	 of	 its	 variance	with	 any	 other	 variable	would	 have	 a
communality	of	0.

In	factor	analysis	we	are	interested	in	finding	common	underlying	dimensions	within	the	data	and	so
we	are	primarily	interested	only	in	the	common	variance.	Therefore,	we	need	to	know	how	much	of	the
variance	 present	 in	 our	 data	 is	 common	 variance.	This	 presents	 us	with	 a	 logical	 impasse:	 to	 do	 the
factor	analysis	we	need	 to	know	the	proportion	of	common	variance	present	 in	 the	data,	yet	 the	only
way	to	find	out	the	extent	of	the	common	variance	is	by	carrying	out	a	factor	analysis!	There	are	two
ways	to	approach	this	problem.	The	first	is	to	assume	that	all	of	the	variance	is	common	variance:	we
assume	that	 the	communality	of	every	variable	 is	1.	By	making	 this	assumption	we	merely	 transpose
our	 original	 data	 into	 constituent	 linear	 components.	 This	 procedure	 is	 PCA.	 Remember	 that	 I	 said
earlier	 that	 PCA	 assumes	 no	 measurement	 error?	 Well,	 by	 setting	 the	 communalities	 to	 1,	 we	 are
assuming	that	all	variance	is	common	variance	(there	is	no	random	variance	at	all).

The	 second	 approach	 is	 to	 estimate	 the	 amount	 of	 common	 variance	 by	 estimating	 communality
values	for	each	variable.	There	are	various	methods	of	estimating	communalities	but	 the	most	widely
used	(including	alpha	factoring)	is	to	use	the	squared	multiple	correlation	(SMC)	of	each	variable	with
all	others.	So,	for	the	popularity	data,	imagine	you	ran	a	multiple	regression	using	one	measure	(Selfish)
as	the	outcome	and	the	other	five	measures	as	predictors:	the	resulting	multiple	R2	(see	Section	8.2.4)



would	be	used	as	an	estimate	of	the	communality	for	the	variable	Selfish.	This	second	approach	is	used
in	 factor	 analysis.	 These	 estimates	 allow	 the	 factor	 analysis	 to	 be	 done.	Once	 the	 underlying	 factors
have	 been	 extracted,	 new	 communalities	 can	 be	 calculated	 that	 represent	 the	 multiple	 correlation
between	 each	 variable	 and	 the	 factors	 extracted.	 Therefore,	 the	 communality	 is	 a	 measure	 of	 the
proportion	of	variance	explained	by	the	extracted	factors.

17.4.3.	Factor	analysis	or	PCA?	②

I	 have	 just	 explained	 that	 there	 are	 two	 approaches	 to	 locating	 underlying	 dimensions	 of	 a	 data	 set:
factor	analysis	and	principal	component	analysis.	These	techniques	differ	in	the	communality	estimates
that	are	used.	As	I	have	hinted	before,	factor	analysis	derives	a	mathematical	model	from	which	factors
are	estimated,	whereas	PCA	decomposes	the	original	data	into	a	set	of	 linear	variates	(see	Dunteman,
1989,	 Chapter	 8,	 for	 more	 detail	 on	 the	 differences	 between	 the	 procedures).	 As	 such,	 only	 factor
analysis	can	estimate	the	underlying	factors,	and	it	relies	on	various	assumptions	for	these	estimates	to
be	accurate.	PCA	is	concerned	only	with	establishing	which	linear	components	exist	within	the	data	and
how	a	particular	variable	might	contribute	to	that	component.

Based	on	an	extensive	literature	review,	Guadagnoli	and	Velicer	(1988)	concluded	that	the	solutions
generated	from	PCA	differ	little	from	those	derived	from	factor-analytic	techniques.	In	reality,	with	30
or	more	variables	and	communalities	greater	than	0.7	for	all	variables,	different	solutions	are	unlikely;
however,	 with	 fewer	 than	 20	 variables	 and	 any	 low	 communalities	 (<	 0.4)	 differences	 can	 occur
(Stevens,	2002).

The	flip	side	of	this	argument	is	eloquently	described	by	Cliff	(1987)	who	observed	that	proponents
of	factor	analysis	‘insist	that	components	analysis	is	at	best	a	common	factor	analysis	with	some	error
added	and	at	worst	an	unrecognizable	hodgepodge	of	things	from	which	nothing	can	be	determined’	(p.
349).	Indeed,	feeling	is	strong	on	this	issue,	with	some	arguing	that	when	PCA	is	used	it	should	not	be
described	 as	 a	 factor	 analysis	 (oops!)	 and	 that	 you	 should	 not	 impute	 substantive	 meaning	 to	 the
resulting	components.	Ultimately,	as	I	hope	to	have	made	clear,	they	are	doing	slightly	different	things.

17.4.4.	Theory	behind	PCA	③

The	theory	behind	factor	analysis	is,	frankly,	a	bit	of	an	arse;	an	arse	tattooed	with	matrix	algebra.	No-
one	wants	 to	 look	 at	matrix	 algebra	when	 they’re	 admiring	 an	 arse,	 so	we’ll	 look	 at	 the	 squeezable
buttocks	of	PCA	instead.	Principal	component	analysis	works	in	a	very	similar	way	to	MANOVA	and
discriminant	 function	 analysis	 (see	 Chapter	 16).	 In	 MANOVA,	 various	 sum	 of	 squares	 and	 cross-



product	matrices	were	calculated	that	contained	information	about	the	relationships	between	dependent
variables.	 I	 mentioned	 before	 that	 these	 SSCP	 matrices	 can	 be	 converted	 to	 variance–covariance
matrices,	which	represent	the	same	information	but	in	averaged	form	(i.e.,	taking	account	of	the	number
of	observations).	I	also	pointed	out	that	by	dividing	each	element	by	the	relevant	standard	deviation	the
variance–covariance	 matrices	 becomes	 standardized.	 The	 result	 is	 a	 correlation	 matrix.	 In	 PCA	 we
usually	deal	with	correlation	matrices	(although	it	 is	possible	to	analyse	a	variance–covariance	matrix
too),	and	my	point	is	that	this	matrix	represents	the	same	information	as	an	SSCP	matrix	in	MANOVA.

SMART	ALEX	ONLY

In	 MANOVA,	 because	 we	 were	 comparing	 groups	 we	 ended	 up	 looking	 at	 the	 variates	 or
components	of	the	SSCP	matrix	that	represented	the	ratio	of	the	model	variance	to	the	error	variance.
These	variates	were	linear	dimensions	that	separated	the	groups	tested,	and	we	saw	that	the	dependent
variables	mapped	onto	these	underlying	components.	In	short,	we	looked	at	whether	the	groups	could	be
separated	 by	 some	 linear	 combination	 of	 the	 dependent	 variables.	 These	 variates	 were	 found	 by
calculating	 the	 eigenvectors	 of	 the	SSCP.	The	number	of	 variates	 obtained	was	 the	 smaller	 of	p	 (the
number	of	dependent	variables)	or	k	−	1	(where	k	is	the	number	of	groups).

In	 PCA	we	 do	much	 the	 same	 thing	 but	 using	 the	 overall	 correlation	matrix	 (because	we’re	 not
interested	in	comparing	groups	of	scores).	To	simplify	things	a	little,	we	take	a	correlation	matrix	and
calculate	the	variates.	There	are	no	groups	of	observations,	and	so	the	number	of	variates	calculated	will
always	equal	the	number	of	variables	measured	(p).	The	variates	are	described,	as	for	MANOVA,	by	the
eigenvectors	associated	with	the	correlation	matrix.	The	elements	of	the	eigenvectors	are	the	weights	of
each	 variable	 on	 the	 variate.	 These	 values	 are	 the	 loadings	 described	 earlier	 (i.e.,	 the	 b-values	 in
equation	 (16.5)).	 The	 largest	 eigenvalue	 associated	 with	 each	 of	 the	 eigenvectors	 provides	 a	 single
indicator	of	the	substantive	importance	of	each	component.	The	basic	idea	is	that	we	retain	components
with	relatively	large	eigenvalues	and	ignore	those	with	relatively	small	eigenvalues.

Factor	analysis	works	differently,	but	there	are	similarities.	Rather	than	using	the	correlation	matrix,
factor	analysis	starts	by	estimating	the	communalities	between	variables	using	the	SMC	(as	described
earlier).	 It	 then	replaces	 the	diagonal	of	 the	correlation	matrix	(the	1s)	with	 these	estimates.	Then	 the
eigenvectors	and	associated	eigenvalues	of	 this	matrix	are	computed.	Again,	 these	eigenvalues	 tell	us
about	the	substantive	importance	of	the	factors,	and	based	on	them	a	decision	is	made	about	how	many
factors	to	retain.	Loadings	and	communalities	are	then	estimated	using	only	the	retained	factors.

EVERYBODY



17.4.5.	Factor	extraction:	eigenvalues	and	the	scree	plot	②

In	both	PCA	and	factor	analysis,	not	all	factors	are	retained.	The	process	of	deciding	how	many	factors
to	keep	is	called	extraction.	 I	mentioned	above	that	eigenvalues	associated	with	a	variate	 indicate	 the
substantive	 importance	 of	 that	 factor.	 Therefore,	 it	 is	 logical	 to	 retain	 only	 factors	 with	 large
eigenvalues.	This	section	looks	at	how	we	determine	whether	an	eigenvalue	is	large	enough	to	represent
a	meaningful	factor.

Cattell	 (1966b)	 suggested	 plotting	 each	 eigenvalue	 (Y-axis)	 against	 the	 factor	 with	 which	 it	 is
associated	(X-axis).	This	graph	is	known	as	a	scree	plot	(because	it	looks	like	a	rock	face	with	a	pile	of
debris,	or	scree,	at	the	bottom).	I	mentioned	earlier	that	it	is	possible	to	obtain	as	many	factors	as	there
are	 variables	 and	 that	 each	 has	 an	 associated	 eigenvalue.	 By	 graphing	 the	 eigenvalues,	 the	 relative
importance	 of	 each	 factor	 becomes	 apparent.	 Typically	 there	 will	 be	 a	 few	 factors	 with	 quite	 high
eigenvalues,	 and	 many	 factors	 with	 relatively	 low	 eigenvalues,	 and	 so	 this	 graph	 has	 a	 very
characteristic	shape:	there	is	a	sharp	descent	in	the	curve	followed	by	a	tailing	off	(see	Figure	17.4).	The
point	 of	 inflexion	 is	where	 the	 slope	of	 the	 line	 changes	 dramatically,	 and	Cattell	 (1966b)	 suggested
using	this	point	as	the	cut-off	for	retaining	factors.	In	Figure	17.4,	 imagine	drawing	two	straight	 lines
(the	 red	 dashed	 lines),	 one	 summarizing	 the	 vertical	 part	 of	 the	 plot	 and	 the	 other	 summarizing	 the
horizontal	part.	The	point	of	inflexion	is	the	data	point	at	which	these	two	lines	meet.	You	retain	only
factors	to	the	left	of	the	point	of	inflexion	(and	do	not	include	the	factor	at	the	point	of	inflexion	itself),4
so	in	both	examples	in	Figure	17.4	we	would	extract	two	factors	because	the	point	of	inflexion	occurs	at
the	third	data	point	(factor).	With	a	sample	of	more	than	200	participants,	the	scree	plot	provides	a	fairly
reliable	criterion	for	factor	selection	(Stevens,	2002).

Although	 scree	 plots	 are	 very	 useful,	 Kaiser	 (1960)	 recommended	 retaining	 all	 factors	 with
eigenvalues	greater	than	1.	This	criterion	is	based	on	the	idea	that	the	eigenvalues	represent	the	amount
of	 variation	 explained	 by	 a	 factor	 and	 that	 an	 eigenvalue	 of	 1	 represents	 a	 substantial	 amount	 of
variation.	Jolliffe	(1972,	1986)	reports	 that	Kaiser’s	criterion	 is	 too	strict	and	suggested	retaining	all
factors	with	eigenvalues	more	 than	0.7.	The	difference	between	how	many	 factors	are	 retained	using
Kaiser’s	methods	compared	to	Jolliffe’s	can	be	dramatic.

You	 might	 well	 wonder	 how	 the	 methods	 compare.	 Generally	 speaking,	 Kaiser’s	 criterion
overestimates	the	number	of	factors	to	retain	(see	Jane	Superbrain	Box	17.2),	but	there	is	some	evidence
that	 it	 is	accurate	when	the	number	of	variables	is	 less	than	30	and	the	resulting	communalities	(after
extraction)	are	all	greater	than	0.7.	Kaiser’s	criterion	can	also	be	accurate	when	the	sample	size	exceeds
250	and	 the	average	communality	 is	greater	 than	or	equal	 to	0.6.	 In	any	other	circumstances	you	are
best	advised	 to	use	a	 scree	plot,	provided	 the	 sample	 size	 is	greater	 than	200	 (see	Stevens,	2002,	 for
more	detail).	By	default,	SPSS	uses	Kaiser’s	criterion	to	extract	factors.	Therefore,	if	you	use	the	scree
plot	 to	 determine	 how	many	 factors	 are	 retained	 you	may	 have	 to	 rerun	 the	 analysis	 specifying	 that
SPSS	extracts	the	number	of	factors	you	require.



As	is	often	the	case	in	statistics,	the	three	criteria	often	provide	different	answers.	In	these	situations
the	 communalities	 of	 the	 factors	 need	 to	 be	 considered.	Remember	 that	 communalities	 represent	 the
common	variance:	if	the	values	are	1	then	all	common	variance	is	accounted	for,	and	if	the	values	are	0
then	no	common	variance	is	accounted	for.	 In	both	PCA	and	factor	analysis	we	determine	how	many
factors/components	 to	 extract	 and	 then	 re-estimate	 the	 communalities.	The	 factors	we	 retain	will	 not
explain	 all	 of	 the	 variance	 in	 the	 data	 (because	 we	 have	 discarded	 some	 information)	 and	 so	 the
communalities	after	extraction	will	always	be	less	than	1.	The	factors	retained	do	not	map	perfectly	onto
the	 original	 variables	 –	 they	 merely	 reflect	 the	 common	 variance	 present	 in	 the	 data.	 If	 the
communalities	 represent	 a	 loss	 of	 information	 then	 they	 are	 important	 statistics.	 The	 closer	 the
communalities	are	 to	1,	 the	better	our	 factors	are	at	explaining	 the	original	data.	 It	 is	 logical	 that	 the
more	 factors	 retained,	 the	 greater	 the	 communalities	will	 be	 (because	 less	 information	 is	 discarded);
therefore,	 the	communalities	are	good	 indices	of	whether	 too	 few	factors	have	been	 retained.	 In	 fact,
with	 generalized	 least-squares	 factor	 analysis	 and	maximum-likelihood	 factor	 analysis	 you	 can	 get	 a
statistical	 measure	 of	 the	 goodness	 of	 fit	 of	 the	 factor	 solution	 (see	 the	 next	 chapter	 for	 more	 on
goodness-of-fit	 tests).	 This	 basically	 measures	 the	 proportion	 of	 variance	 that	 the	 factor	 solution
explains	(so	can	be	thought	of	as	comparing	communalities	before	and	after	extraction).

FIGURE	17.4	Examples	of	scree	plots	for	data	that	probably	have	two	underlying	factors

As	a	final	word	of	advice,	your	decision	on	how	many	factors	to	extract	will	depend	also	on	why
you’re	 doing	 the	 analysis;	 for	 example,	 if	 you’re	 trying	 to	 overcome	 multicollinearity	 problems	 in
regression,	then	it	might	be	better	to	extract	too	many	factors	than	too	few.

17.4.6.	Improving	interpretation:	factor	rotation	③

Once	factors	have	been	extracted,	it	is	possible	to	calculate	the	degree	to	which	variables	load	on	these
factors	(i.e.,	calculate	the	loadings	for	each	variable	on	each	factor).	Generally,	you	will	find	that	most



variables	have	high	loadings	on	the	most	important	factor	and	small	loadings	on	all	other	factors.	This
characteristic	 makes	 interpretation	 difficult,	 and	 so	 a	 technique	 called	 factor	 rotation	 is	 used	 to
discriminate	between	factors.	If	we	visualize	our	factors	as	an	axis	along	which	variables	can	be	plotted,
then	factor	rotation	effectively	rotates	these	axes	such	that	variables	are	loaded	maximally	to	only	one
factor.	Figure	17.5	demonstrates	how	this	process	works	using	an	example	in	which	there	are	only	two
factors.	 Imagine	 that	 a	 sociologist	was	 interested	 in	 classifying	university	 lecturers	 as	 a	demographic
group.	 She	 discovered	 that	 two	 underlying	 dimensions	 best	 describe	 this	 group:	 alcoholism	 and
achievement	(go	 to	any	academic	conference	and	you’ll	see	why	I	chose	 these	dimensions).	The	first
factor,	 alcoholism,	 has	 a	 cluster	 of	 variables	 associated	 with	 it	 (green	 circles),	 and	 these	 could	 be
measures	 such	 as	 the	 number	 of	 units	 drunk	 in	 a	 week,	 dependency	 and	 obsessive	 personality.	 The
second	 factor,	 achievement,	 also	 has	 a	 cluster	 of	 variables	 associated	 with	 it	 (red	 circles)	 and	 these
could	be	measures	relating	 to	salary,	 job	status	and	number	of	 research	publications.	 Initially,	 the	full
lines	represent	the	factors,	and	by	looking	at	the	coordinates	it	should	be	clear	that	the	red	circles	have
high	loadings	for	factor	2	(they	are	a	long	way	up	this	axis)	and	medium	loadings	for	factor	1	(they	are
not	 very	 far	 up	 this	 axis).	Conversely,	 the	 green	 circles	 have	high	 loadings	 for	 factor	 1	 and	medium
loadings	for	factor	2.	By	rotating	the	axes	(dashed	lines),	we	ensure	that	both	clusters	of	variables	are
intersected	by	the	factor	to	which	they	relate	most.	So,	after	rotation,	the	loadings	of	the	variables	are
maximized	 on	 one	 factor	 (the	 factor	 that	 intersects	 the	 cluster)	 and	 minimized	 on	 the	 remaining
factor(s).	 If	 an	 axis	 passes	 through	 a	 cluster	 of	 variables,	 then	 these	variables	will	 have	 a	 loading	of
approximately	zero	on	 the	opposite	axis.	 If	 this	 idea	 is	confusing,	 then	 look	at	Figure	17.5	 and	 think
about	the	values	of	the	coordinates	before	and	after	rotation	(this	is	best	achieved	by	turning	the	book
when	you	look	at	the	rotated	axes).

JANE	SUPERBRAIN	17.2

How	many	factors	do	I	retain?	③
There	 are	 fundamental	 problems	 with	 Kaiser’s	 criterion	 (Nunnally	 &	 Bernstein,	 1994).	 For	 one	 thing,	 an	 eigenvalue	 of	 1	 means
different	 things	 in	different	analyses:	with	100	variables	 it	means	 that	a	 factor	explains	1%	of	 the	variance,	but	with	10	variables	 it
means	that	a	factor	explains	10%	of	the	variance.	Clearly,	these	two	situations	are	very	different	and	a	single	rule	that	covers	both	is
inappropriate.	An	eigenvalue	of	1	also	means	only	 that	 the	 factor	explains	as	much	variance	as	a	variable,	which	 rather	defeats	 the
original	 intention	of	 the	analysis	 to	reduce	variables	down	to	‘more	substantive’	underlying	factors.	Consequently,	Kaiser’s	criterion
often	overestimates	 the	number	of	 factors.	By	 this	argument	Jolliffe’s	criterion	 is	even	worse	 (a	 factor	explains	 less	variance	 than	a
variable).

There	are	more	complex	ways	to	determine	how	many	factors	to	retain,	but	they	are	not	easy	to	do	in	SPSS.	The	best	is	probably
parallel	analysis	(Horn,	1965).	Essentially	each	eigenvalue	(which	represents	the	size	of	the	factor)	is	compared	against	an	eigenvalue
for	 the	corresponding	 factor	 in	many	 randomly	generated	data	sets	 that	have	 the	same	characteristics	as	 the	data	being	analysed.	 In
doing	so,	each	eigenvalue	is	compared	to	an	eigenvalue	from	a	data	set	that	has	no	underlying	factors.	This	is	a	bit	like	asking	whether
our	observed	factor	is	bigger	than	a	non-existing	factor.	Factors	that	are	bigger	than	their	‘random’	counterparts	are	retained.	Of	parallel
analysis,	the	scree	plot	and	Kaiser’s	criterion,	Kaiser’s	criterion	is,	in	general,	worst	and	parallel	analysis	best	(Zwick	&	Velicer,	1986).
If	 you	 want	 to	 do	 parallel	 analysis	 then	 SPSS	 syntax	 is	 available	 (O’Connor,	 2000)	 from
https://people.ok.ubc.ca/brioconn/nfactors/nfactors.html.

http://people.ok.ubc.ca/brioconn/nfactors/nfactors.html


FIGURE	17.5
Schematic	representations	of	factor	rotation.	The	left	graph	displays	orthogonal	rotation,	whereas	the
right	graph	displays	oblique	rotation	(see	text	for	more	details).	θ	is	the	angle	through	which	the	axes
are	rotated

There	are	two	types	of	rotation	that	can	be	done.	The	first	is	orthogonal	rotation,	and	the	left-hand
side	 of	 Figure	 17.5	 represents	 this	 method.	 In	 Chapter	 11	 we	 saw	 that	 the	 term	 orthogonal	 means
‘unrelated’,	 and	 in	 this	 context	 it	 means	 that	 we	 rotate	 factors	 while	 keeping	 them	 independent,	 or
unrelated.	Before	rotation,	all	factors	are	independent	(i.e.,	they	do	not	correlate	at	all)	and	orthogonal
rotation	ensures	 that	 the	 factors	 remain	uncor-related.	That	 is	why	 in	Figure	17.5	 the	axes	are	 turned
while	 remaining	perpendicular.5	 The	 other	 form	 of	 rotation	 is	oblique	 rotation.	 The	 difference	with
oblique	rotation	is	that	the	factors	are	allowed	to	correlate	(hence,	the	axes	of	the	right-hand	diagram	of
Figure	17.5	do	not	remain	perpendicular).

The	 choice	of	 rotation	depends	on	whether	 there	 is	 a	 good	 theoretical	 reason	 to	 suppose	 that	 the
factors	should	be	related	or	independent	(but	see	my	later	comments	on	this),	and	also	how	the	variables
cluster	on	the	factors	before	rotation.	On	the	first	point,	it	is	probably	quite	rare	that	you	would	measure
a	 set	 of	 related	 variables	 and	 expect	 their	 underlying	 dimensions	 to	 be	 completely	 independent.	 For
example,	we	wouldn’t	expect	alcoholism	to	be	completely	independent	of	achievement	(after	all,	high
achievement	 leads	 to	 high	 stress,	 which	 can	 lead	 to	 the	 drinks	 cabinet).	 Therefore,	 on	 theoretical
grounds,	 we	 should	 choose	 oblique	 rotation.	 In	 fact,	 some	 argue	 that	 oblique	 rotation	 is	 the	 only
sensible	choice	for	naturally	occurring	data.

On	 the	 second	 point,	 Figure	 17.5	 demonstrates	 how	 the	 positioning	 of	 clusters	 is	 important	 in
determining	how	successful	the	rotation	will	be	(note	the	position	of	the	green	circles).	If	an	orthogonal
rotation	 was	 carried	 out	 on	 the	 right-hand	 diagram	 it	 would	 be	 considerably	 less	 successful	 in
maximizing	loadings	than	the	oblique	rotation	that	is	displayed.

One	approach	 is	 to	 run	 the	analysis	using	both	 types	of	 rotation.	Pedhazur	and	Schmelkin	 (1991)
suggest	that	if	 the	oblique	rotation	demonstrates	a	negligible	correlation	between	the	extracted	factors
then	it	is	reasonable	to	use	the	orthogonally	rotated	solution.	If	the	oblique	rotation	reveals	a	correlated



factor	 structure,	 then	 the	 orthogonally	 rotated	 solution	 should	 be	 discarded.	 We	 can	 check	 the
relationships	 between	 factors	 using	 the	 factor	 transformation	matrix,	 which	 is	 used	 to	 convert	 the
unrotated	factor	loadings	into	the	rotated	ones.	Values	in	this	matrix	represent	the	angle	through	which
the	axes	have	been	rotated,	or	the	degree	to	which	factors	have	been	rotated.

17.4.6.1.	Choosing	a	method	of	factor	rotation	③

SPSS	has	three	methods	of	orthogonal	rotation	(varimax,	quartimax	and	equamax)	and	two	methods
of	oblique	rotation	(direct	oblimin	and	promax).	These	methods	differ	in	how	they	rotate	the	factors,
so	the	resulting	output	depends	on	which	method	you	select.	Quartimax	rotation	attempts	to	maximize
the	spread	of	factor	loadings	for	a	variable	across	all	factors.	Therefore,	interpreting	variables	becomes
easier.	However,	this	often	results	in	lots	of	variables	loading	highly	on	a	single	factor.	Varimax	is	the
opposite	in	that	it	attempts	to	maximize	the	dispersion	of	loadings	within	factors.	Therefore,	it	tries	to
load	 a	 smaller	 number	 of	 variables	 highly	 on	 each	 factor,	 resulting	 in	more	 interpretable	 clusters	 of
factors.	Equamax	is	a	hybrid	of	the	other	two	approaches	and	is	reported	to	behave	fairly	erratically	(see
Tabachnick	and	Fidell,	2012).	For	a	first	analysis,	you	should	probably	select	varimax	because	 it	 is	a
good	general	approach	that	simplifies	the	interpretation	of	factors.

The	case	with	oblique	rotations	is	more	complex	because	correlation	between	factors	is	permitted.
In	the	case	of	direct	oblimin,	the	degree	to	which	factors	are	allowed	to	correlate	is	determined	by	the
value	of	a	constant	called	delta.	The	default	value	in	SPSS	is	0,	and	this	ensures	that	high	correlation
between	factors	is	not	allowed	(this	is	known	as	direct	quartimin	rotation).	If	you	choose	to	set	delta	to
greater	 than	 0	 (up	 to	 0.8),	 then	 you	 can	 expect	 highly	 correlated	 factors;	 if	 you	 set	 delta	 less	 than	 0
(down	to	−0.8)	you	can	expect	 less	correlated	factors.	The	default	setting	of	zero	is	sensible	for	most
analyses,	 and	 I	 don’t	 recommend	 changing	 it	 unless	 you	know	what	 you	 are	 doing	 (see	Pedhazur	&
Schmelkin,	1991,	p.	620).	Promax	is	a	faster	procedure	designed	for	very	large	data	sets.

In	 theory,	 the	 exact	 choice	 of	 rotation	 will	 depend	 largely	 on	 whether	 or	 not	 you	 think	 that	 the
underlying	factors	should	be	related.	If	you	expect	the	factors	to	be	independent	then	you	should	choose
one	of	 the	orthogonal	rotations	(I	recommend	varimax).	If,	however,	 there	are	 theoretical	grounds	for
supposing	that	your	factors	might	correlate,	then	direct	oblimin	should	be	selected.	In	practice,	there	are
strong	grounds	 to	believe	 that	orthogonal	 rotations	are	a	complete	nonsense	 for	naturalistic	data,	 and
certainly	for	any	data	involving	humans	(can	you	think	of	any	psychological	construct	that	is	not	in	any
way	correlated	with	some	other	psychological	construct?)	As	such,	some	argue	that	orthogonal	rotations
should	never	be	used.

17.4.6.2.	Substantive	importance	of	loadings	②

Once	a	factor	structure	has	been	found,	it	is	important	to	decide	which	variables	make	up	which	factors.
Earlier	I	said	that	the	loadings	were	a	gauge	of	the	substantive	importance	of	a	given	variable	to	a	given
factor.	Therefore,	it	makes	sense	that	we	use	these	values	to	place	variables	with	factors.	It	is	possible	to
assess	 the	 statistical	 significance	 of	 a	 loading	 (after	 all,	 it	 is	 simply	 a	 correlation	 coefficient	 or
regression	coefficient);	however,	 it	 is	not	as	easy	as	 it	 seems	(see	Stevens,	2002,	p.	393)	because	 the
significance	 of	 a	 factor	 loading	will	 depend	 on	 the	 sample	 size.	 Stevens	 (2002)	 produced	 a	 table	 of
critical	 values	 against	 which	 loadings	 can	 be	 compared.	 To	 summarize,	 he	 recommends	 that	 for	 a
sample	size	of	50	a	loading	of	.722	can	be	considered	significant,	for	100	the	loading	should	be	greater
than	.512,	for	200	it	should	be	greater	than	.364,	for	300	it	should	be	greater	than	.298,	for	600	it	should



be	greater	than	.21,	and	for	1000	it	should	be	greater	than	.162.	These	values	are	based	on	an	alpha	level
of	.01	(two-tailed),	which	allows	for	the	fact	that	several	loadings	will	need	to	be	tested	(see	Stevens,
2002,	for	further	detail).	Therefore,	in	very	large	samples,	small	loadings	can	be	considered	statistically
meaningful.

However,	 the	 significance	 of	 a	 loading	 gives	 little	 indication	 of	 the	 substantive	 importance	 of	 a
variable	to	a	factor.	We	can	guage	importance	by	squaring	the	loading	to	give	an	estimate	of	the	amount
of	variance	in	a	factor	accounted	for	by	a	variable	(like	R2).	In	this	respect	Stevens	(2002)	recommends
interpreting	 factor	 loadings	with	 an	 absolute	value	greater	 than	 .4	 (which	explain	 around	16%	of	 the
variance	in	the	variable).	Some	researchers	opt	for	the	lower	criterion	of	.3.

17.5.	Research	example	②

One	 of	 the	 uses	 of	 factor	 analysis	 is	 to	 develop	 questionnaires.	 I	 have	 noticed	 that	 a	 lot	 of	 students
become	very	stressed	about	SPSS.	Therefore,	I	wanted	to	design	a	questionnaire	to	measure	a	trait	that	I
termed	 ‘SPSS	 anxiety’.	 I	 devised	 a	 questionnaire	 to	 measure	 various	 aspects	 of	 students’	 anxiety
towards	learning	SPSS,	the	SAQ	(Figure	17.6).	I	generated	questions	based	on	interviews	with	anxious
and	 non-anxious	 students	 and	 came	 up	 with	 23	 possible	 questions	 to	 include.	 Each	 question	 was	 a
statement	 followed	 by	 a	 5-point	 Likert	 scale:	 ‘strongly	 disagree’,	 ‘disagree’,	 ‘neither	 agree	 nor
disagree’,	 ‘agree’	 and	 ‘strongly	 agree’	 (SD,	 D,	 N,	 A,	 and	 SA,	 respectively).	 The	 questionnaire	 was
designed	to	measure	how	anxious	a	given	individual	would	be	about	learning	how	to	use	SPSS.	What’s
more,	 I	 wanted	 to	 know	whether	 anxiety	 about	 SPSS	 could	 be	 broken	 down	 into	 specific	 forms	 of
anxiety.	In	other	words,	what	latent	variables	contribute	to	anxiety	about	SPSS?

With	a	little	help	from	a	few	lecturer	friends	I	collected	2571	completed	questionnaires	(at	this	point
it	should	become	apparent	that	this	example	is	fictitious!).	Load	the	data	file	(SAQ.sav)	into	SPSS	and
have	a	look	at	the	variables	and	their	properties.	The	first	thing	to	note	is	that	each	question	(variable)	is
represented	by	a	different	column.	We	know	that	 in	SPSS,	cases	(or	people’s	data)	are	stored	in	rows
and	variables	are	stored	in	columns,	so	this	layout	is	consistent	with	past	chapters.	The	second	thing	to
notice	 is	 that	 there	 are	 23	 variables	 labelled	Question_01	 to	Question_23	 and	 that	 each	 has	 a	 label
indicating	 the	 question.	 By	 labelling	 my	 variables	 I	 can	 be	 very	 clear	 about	 what	 each	 variable
represents	(this	is	the	value	of	giving	your	variables	full	titles	rather	than	just	using	restrictive	column
headings).

OLIVER	TWISTED

Please	Sir,	can	I	have	some	more	…	questionnaires?

’I’m	going	to	design	a	questionnaire	to	measure	one’s	propensity	to	pick	a	pocket	or	two,’	says	Oliver,	‘but	how	would	I	go	about	doing
it?’	You’d	read	the	useful	information	about	the	dos	and	don’ts	of	questionnaire	design	in	the	additional	material	for	this	chapter	on	the
companion	website,	that’s	how.	Rate	how	useful	it	is	on	a	Likert	scale	from	1	=	not	useful	at	all,	to	5	=	very	useful.



17.5.1.	General	procedure	①

Figure	17.7	 shows	 the	general	 procedure	 for	 conducting	 factor	 analysis	or	PCA.	First	we	need	 to	do
some	initial	screening	of	the	data,	then	once	we	embark	on	the	main	analysis	we	need	to	consider	how
many	factors	 to	 retain	and	what	 rotation	 to	use,	and	 if	we	are	using	 the	analysis	 to	 look	at	 the	 factor
structure	of	a	questionnaire	then	we	would	want	to	do	a	reliability	analysis	at	the	end	(see	Section	17.9).

FIGURE	17.6	The	SPSS	anxiety	questionnaire	(SAQ)

17.5.2.	Before	you	begin	②

17.5.2.1.	Sample	size	②

Correlation	coefficients	fluctuate	from	sample	to	sample,	much	more	so	in	small	samples	than	in	large.
Therefore,	the	reliability	of	factor	analysis	will	depend	on	sample	size.	Many	‘rules	of	thumb’	exist	for



the	 ratio	 of	 cases	 to	 variables;	 a	 common	 one	 is	 to	 have	 at	 least	 10–15	 participants	 per	 variable.
Although	 I’ve	 heard	 this	 rule	 bandied	 about	 on	 numerous	 occasions,	 its	 empirical	 basis	 is	 unclear
(although	Nunnally,	1978,	did	recommend	having	10	times	as	many	participants	as	variables).	Based	on
real	 data,	 Arrindell	 and	 van	 der	 Ende	 (1985)	 concluded	 that	 the	 cases-to-variables	 ratio	 made	 little
difference	to	the	stability	of	factor	solutions.

FIGURE	17.7	General	procedure	for	factor	analysis	and	PCA

What	 does	matter	 is	 the	 overall	 sample	 size.	 Test	 parameters	 tend	 to	 be	 stable	 regardless	 of	 the
cases-to-variables	ratio	(Kass	&	Tinsley,	1979),	which	is	why	Tabachnick	and	Fidell	(2012)	suggest	that
‘it	 is	comforting	to	have	at	 least	300	cases’	(p.	613)	and	Comrey	and	Lee	(1992)	class	300	as	a	good
sample	size,	100	as	poor	and	1000	as	excellent.	However,	the	picture	is	a	little	more	complicated	than
that.	First,	the	factor	loadings	matter:	Guadagnoli	and	Velicer	(1988)	found	that	if	a	factor	has	four	or
more	loadings	greater	than	.6	then	it	is	reliable	regardless	of	sample	size.	Furthermore,	factors	with	10
or	more	loadings	greater	than	.40	are	reliable	if	the	sample	size	is	greater	than	150.	Finally,	factors	with
a	few	low	loadings	should	not	be	interpreted	unless	the	sample	size	is	300	or	more.

Second,	the	communalities	matter.	MacCallum,	Widaman,	Zhang,	and	Hong	(1999)	have	shown	that
as	communalities	become	lower	the	importance	of	sample	size	increases.	With	all	communalities	above
.6,	 relatively	 small	 samples	 (less	 than	100)	may	be	perfectly	 adequate.	With	 communalities	 in	 the	 .5
range,	samples	between	100	and	200	can	be	good	enough	provided	there	are	relatively	few	factors	each
with	only	a	small	number	of	indicator	variables.	In	the	worst	scenario	of	low	communalities	(well	below
.5)	and	a	larger	number	of	underlying	factors	they	recommend	samples	above	500.

What’s	clear	from	this	work	is	 that	a	sample	of	300	or	more	will	probably	provide	a	stable	factor
solution,	 but	 that	 a	 wise	 researcher	 will	 measure	 enough	 variables	 to	measure	 adequately	 all	 of	 the
factors	that	theoretically	they	would	expect	to	find.

There	are	measures	of	sampling	adequacy	such	as	the	Kaiser–Meyer–Olkin	measure	of	sampling
adequacy	(KMO)	(Kaiser,	1970).	The	KMO	can	be	calculated	for	individual	and	multiple	variables	and
represents	 the	 ratio	 of	 the	 squared	 correlation	 between	 variables	 to	 the	 squared	 partial	 correlation
between	variables.	The	KMO	statistic	varies	between	0	and	1.	A	value	of	0	 indicates	 that	 the	sum	of
partial	 correlations	 is	 large	 relative	 to	 the	 sum	 of	 correlations,	 indicating	 diffusion	 in	 the	 pattern	 of
correlations	 (hence,	 factor	 analysis	 is	 likely	 to	 be	 inappropriate).	 A	 value	 close	 to	 1	 indicates	 that
patterns	of	correlations	are	relatively	compact	and	so	factor	analysis	should	yield	distinct	and	reliable



factors.	Kaiser	(1974)	recommends	accepting	values	greater	than	.5	as	barely	acceptable	(values	below
this	should	lead	you	to	either	collect	more	data	or	rethink	which	variables	to	include).	Hutcheson	and
Sofroniou	(1999)	provide	appealing	guidelines,	especially	if	you	like	the	letter	M:

Marvellous:	values	in	the	.90s
Meritorious:	values	in	the	.80s
Middling:	values	in	the	.70s
Mediocre:	values	in	the	.60s
Miserable:	values	in	the	.50s
Merde:	values	below	.50.	(Actually	they	used	the	word	‘unacceptable’	but	I	don’t	like	the	fact	that
it	doesn’t	start	with	the	letter	‘M’	so	I	have	changed	it.)

17.5.2.2.	Correlations	between	variables	③

When	I	was	an	undergraduate,	my	statistics	lecturer	always	used	to	say	‘if	you	put	garbage	in,	you	get
garbage	out’.	This	saying	applies	particularly	to	factor	analysis	because	SPSS	will	usually	find	a	factor
solution	to	a	set	of	variables.	However,	the	solution	is	unlikely	to	have	any	real	meaning	if	the	variables
analysed	are	not	sensible.	The	first	thing	to	do	when	conducting	a	factor	analysis	or	PCA	is	to	look	at
the	correlations	between	variables.	There	are	essentially	two	potential	problems:	(1)	correlations	that	are
not	high	enough;	and	(2)	correlations	that	are	too	high.	In	both	cases	the	remedy	is	to	remove	variables
from	the	analysis.	The	correlations	between	variables	can	be	checked	using	the	correlate	procedure	(see
Chapter	7)	to	create	a	correlation	matrix	of	all	variables.	This	matrix	can	also	be	created	as	part	of	the
factor	analysis.	We	will	look	at	each	problem	in	turn.

If	our	test	questions	measure	the	same	underlying	dimension	(or	dimensions)	then	we	would	expect
them	 to	 correlate	 with	 each	 other	 (because	 they	 are	 measuring	 the	 same	 thing).	 Even	 if	 questions
measure	different	aspects	of	 the	same	things	(e.g.,	we	could	measure	overall	anxiety	 in	 terms	of	sub-
components	 such	 as	 worry,	 intrusive	 thoughts	 and	 physiological	 arousal),	 there	 should	 still	 be	 high
correlations	 between	 the	 variables	 relating	 to	 these	 sub-traits.	We	 can	 test	 for	 this	 problem	 first	 by
visually	scanning	the	correlation	matrix	and	looking	for	correlations	below	about	.3	(you	could	use	the
significance	of	 correlations	but,	 given	 the	 large	 sample	 sizes	normally	used	with	 factor	 analysis,	 this
approach	isn’t	helpful	because	even	very	small	correlations	will	be	significant	in	large	samples).	If	any
variables	 have	 lots	 of	 correlations	 below	 .3	 then	 consider	 excluding	 them.	 It	 should	 be	 immediately
clear	that	this	approach	is	very	subjective:	I’ve	used	fuzzy	terms	such	as	‘about	.3’	and	‘lots	of’,	but	I
have	to	because	every	data	set	is	different.	Analysing	data	really	is	a	skill,	and	there’s	more	to	it	than
following	a	recipe	book!

For	an	objective	test	of	whether	correlations	(overall)	are	too	small	we	can	test	for	a	very	extreme
scenario.	 If	 the	variables	 in	our	correlation	matrix	did	not	correlate	at	all,	 then	our	correlation	matrix
would	 be	 an	 identity	matrix	 (i.e.,	 the	 off-diagonal	 components	would	 be	 zero);	 so,	 if	 the	 population
correlation	matrix	resembles	an	identity	matrix	then	it	means	that	every	variable	correlates	very	badly
with	 all	 other	 variables	 (i.e.,	 all	 correlation	 coefficients	 are	 close	 to	 zero).	 Bartlett’s	 test	 tells	 us
whether	 our	 correlation	 matrix	 is	 significantly	 different	 from	 an	 identity	 matrix.	 Therefore,	 if	 it	 is
significant	then	it	means	that	the	correlations	between	variables	are	(overall)	significantly	different	from
zero.	 The	 trouble	 is	 that	 because	 significance	 depends	 on	 sample	 size	 (see	 Section	 2.6.1.10)	 and	 in
factor	analysis	sample	sizes	are	very	large,	Bartlett’s	test	will	nearly	always	be	significant:	even	when
the	correlations	between	variables	are	very	small	indeed.	As	such,	it’s	not	a	useful	test	(although	in	the
unlikely	event	that	it	is	non-significant	then	you	certainly	have	a	big	problem).



The	opposite	problem	is	when	variables	correlate	too	highly.	Although	mild	multicollinearity	is	not
a	problem	for	factor	analysis	 it	 is	 important	 to	avoid	extreme	multicollinearity	(i.e.,	variables	 that	are
very	 highly	 correlated)	 and	 singularity	 (variables	 that	 are	 perfectly	 correlated).	 As	 with	 regression,
multicollinearity	 causes	 problems	 in	 factor	 analysis	 because	 it	 becomes	 impossible	 to	 determine	 the
unique	 contribution	 to	 a	 factor	 of	 the	 variables	 that	 are	 highly	 correlated.	Multicollinearity	 does	 not
cause	a	problem	for	PCA.

Multicollinearity	can	be	detected	by	looking	at	the	determinant	of	the	R-matrix,	denoted	R	(see	Jane
Superbrain	Box	17.3).	One	 simple	heuristic	 is	 that	 the	determinant	of	 the	R-matrix	 should	be	greater
than	0.00001.

To	try	to	avoid	or	to	correct	for	multicollinearity	you	could	look	through	the	correlation	matrix	for
variables	 that	 correlate	 very	 highly	 (r	 >	 .8)	 and	 consider	 eliminating	 one	 of	 the	 variables	 (or	 more
depending	on	the	extent	of	the	problem)	before	proceeding.	The	problem	with	a	heuristic	such	as	this	is
that	 the	 effect	 of	 two	 variables	 correlating	 with	 r	 =	 .9	 might	 be	 less	 than	 the	 effect	 of,	 say,	 three
variables	that	all	correlate	at	r	=	.6.	In	other	words,	eliminating	such	highly	correlating	variables	might
not	be	getting	at	the	cause	of	the	multicollinearity	(Rockwell,	1975).	It	may	take	trial	and	error	to	work
out	which	variables	are	creating	the	problem.

17.5.2.3.	The	distribution	of	data	②

As	well	as	looking	for	interrelations,	you	might	ensure	that	variables	have	roughly	normal	distributions
and	are	measured	at	an	 interval	 level	 (which	Likert	scales	are,	perhaps	wrongly,	assumed	 to	be).	The
assumption	of	normality	is	important	if	you	wish	to	generalize	the	results	of	your	analysis	beyond	the
sample	 collected	 or	 do	 significance	 tests,	 but	 otherwise	 it’s	 not.	You	 can	 do	 factor	 analysis	 on	 non-
continuous	data;	for	example,	 if	you	had	dichotomous	variables,	 it’s	possible	(using	syntax)	 to	do	the
factor	analysis	direct	from	the	correlation	matrix,	but	you	should	construct	the	correlation	matrix	from
tetrachoric	 correlation	 coefficients	 (http://www.john-uebersax.com/stat/tetra.htm).	 The	 only	 hassle	 is
computing	the	correlations	(but	see	the	website	for	software	options).

17.6.	Running	the	analysis	②

Access	 the	main	 dialog	 box	 (Figure	 17.9)	 by	 selecting	 	 Simply
select	 the	variables	you	want	 to	 include	 in	 the	analysis	 (remember	 to	exclude	any	variables	 that	were
identified	as	problematic	during	the	data	screening)	and	transfer	them	to	the	box	labelled	Variables	by
clicking	on	 .

There	are	several	options	available,	 the	 first	of	which	can	be	accessed	by	clicking	on	 	 to
access	the	dialog	box	in	Figure	17.10.	The	Univariate	descriptives	option	provides	means	and	standard
deviations	for	each	variable.	Most	of	the	other	options	relate	to	the	correlation	matrix	of	variables	(the
R-matrix	 described	 earlier).	 The	 Coefficients	 option	 produces	 the	 R-matrix,	 and	 selecting	 the
Significance	 levels	option	will	 include	 the	significance	value	of	each	correlation	 in	 the	R-matrix.	You
can	 also	 ask	 for	 the	Determinant	 of	 this	 matrix,	 which	 is	 useful	 for	 testing	 for	 multicollinearity	 or
singularity	(see	Section	17.5.2.2).

KMO	 and	 Bartlett’s	 test	 of	 sphericity	 produces	 the	 Kaiser–Meyer–Olkin	 (see	 Section	 17.5.2.1)
measure	 of	 sampling	 adequacy	 and	 Bartlett’s	 test	 (see	 Section	 17.5.2.2).	 We	 have	 already	 seen	 the
various	criteria	for	adequacy,	but	with	a	sample	of	2571	we	shouldn’t	have	cause	to	worry.

http://www.john-uebersax.com/stat/tetra.htm


The	Reproduced	option	produces	a	correlation	matrix	based	on	the	model	(rather	than	the	real	data).
Differences	between	the	matrix	based	on	the	model	and	the	matrix	based	on	the	observed	data	indicate
the	residuals	of	the	model.	SPSS	produces	these	residuals	in	the	lower	table	of	the	reproduced	matrix,
and	we	want	 relatively	 few	 of	 these	 values	 to	 be	 greater	 than	 .05.	 Luckily,	 to	 save	 us	 scanning	 this
matrix,	SPSS	produces	a	summary	of	how	many	residuals	lie	above	.05.	The	Reproduced	option	should
be	 selected	 to	 obtain	 this	 summary.	 The	 Anti-image	 option	 produces	 an	 anti-image	 matrix	 of
covariances	and	correlations.	These	matrices	contain	measures	of	sampling	adequacy	for	each	variable
along	 the	 diagonal	 and	 the	 negatives	 of	 the	 partial	 correlation/covariances	 on	 the	 off-diagonals.	 The
diagonal	elements,	like	the	KMO	measure,	should	all	be	greater	than	.5	at	a	bare	minimum	if	the	sample
is	 adequate	 for	 a	 given	pair	 of	 variables.	 If	 any	pair	 of	 variables	 has	 a	 value	 less	 than	 this,	 consider
dropping	one	of	 them	from	the	analysis.	The	off-diagonal	elements	should	all	be	very	small	(close	 to
zero)	 in	a	good	model.	When	you	have	 finished	with	 this	dialog	box	click	on	 	 to	 return	 to	 the
main	dialog	box.

JANE	SUPERBRAIN	17.3

What	is	the	determinant?	③
The	determinant	 of	 a	matrix	 is	 an	 important	 diagnostic	 tool	 in	 factor	 analysis,	 but	 the	 question	 of	what	 it	 is	 is	 not	 easy	 to	 answer
because	 it	 has	 a	 mathematical	 definition	 and	 I’m	 not	 a	 mathematician.	 However,	 we	 can	 bypass	 the	 maths	 and	 think	 about	 the
determinant	conceptually.	The	way	that	I	think	of	the	determinant	is	as	describing	the	‘area’	of	the	data.	In	Jane	Superbrain	Box	8.3	we
saw	the	two	diagrams	in	Figure	17.8.	At	the	time	I	used	these	to	describe	eigenvectors	and	eigenvalues	(which	describe	the	shape	of	the
data).	The	determinant	is	related	to	eigenvalues	and	eigenvectors	but	instead	of	describing	the	height	and	width	of	the	data	it	describes
the	overall	area.	So,	 in	 the	 left	diagram,	 the	determinant	of	 those	data	would	represent	 the	area	 inside	 the	red	dashed	ellipse.	These
variables	have	a	low	correlation	so	the	determinant	(area)	is	big;	the	biggest	value	it	can	be	is	1.	In	the	right	diagram,	the	variables	are
perfectly	correlated	or	singular,	and	the	ellipse	(red	dashed	line)	has	been	squashed	down	to	basically	a	straight	line.	In	other	words,	the
opposite	sides	of	the	ellipse	have	actually	met	each	other	and	there	is	no	distance	between	them	at	all.	Put	another	way,	the	area,	or
determinant,	is	zero.	Therefore,	the	determinant	tells	us	whether	the	correlation	matrix	is	singular	(determinant	is	0),	or	if	all	variables
are	completely	unrelated	(determinant	is	1),	or	somewhere	in	between.

FIGURE	17.8	Data	with	a	large	(left)	and	small	(right)	determinant



FIGURE	17.9
Main	dialog	box	for	factor	analysis

FIGURE	17.10
Descriptives	in	factor	analysis

17.6.1.	Factor	extraction	in	SPSS	②

To	access	the	Extraction	dialog	box	(Figure	17.11),	click	on	 	in	the	main	dialog	box.	There	are
several	 ways	 of	 conducting	 a	 factor	 analysis	 (see	 Section	 17.4.1).	 For	 our	 purposes	 we	 will	 use
principal	axis	 factoring	 ( ).	 In	 the	Analyze	box	 there	are	 two	options:	 to	analyse
the	Correlation	matrix	or	to	analyse	the	Covariance	matrix	(SPSS	Tip	17.1).	The	Display	box	has	two
options	within	it:	to	display	the	Unrotated	factor	solution	and	a	Scree	plot.	The	scree	plot	was	described
in	Section	17.4.5	and	is	a	useful	way	of	establishing	how	many	factors	should	be	retained	in	an	analysis.
The	factor	solution	is	useful	in	assessing	the	improvement	of	interpretation	due	to	rotation.	If	the	rotated
solution	 is	 little	 better	 than	 the	 unrotated	 solution	 then	 it	 is	 possible	 that	 an	 inappropriate	 (or	 less



optimal)	rotation	method	has	been	used.

SPSS	TIP	17.1 	Correlation	or	covariance	matrix?	③
You	should	be	happy	with	the	idea	that	the	variance–covariance	matrix	and	correlation	matrix	are	different	versions	of	the	same	thing.
However,	generally	the	results	will	differ	depending	on	which	matrix	you	analyse.	Analysing	the	correlation	matrix	is	a	useful	default
method	because	it	takes	the	standardized	form	of	the	matrix;	therefore,	if	variables	have	been	measured	using	different	scales	this	will
not	affect	the	analysis.	In	this	example,	all	variables	have	been	measured	using	the	same	measurement	scale	(a	5-point	Likert	scale),	but
often	you	will	want	to	analyse	variables	that	use	different	measurement	scales.	Analysing	the	correlation	matrix	ensures	that	differences
in	measurement	scales	are	accounted	for.	In	addition,	even	variables	measured	using	the	same	scale	can	have	very	different	variances
and	this	creates	problems	for	PCA.	Using	the	correlation	matrix	eliminates	this	problem	also.

Having	 said	 that,	 there	 are	 statistical	 reasons	 for	 preferring	 to	 analyse	 the	 covariance	 matrix:	 correlation	 coefficients	 are	 not
sensitive	to	variations	in	the	dispersion	of	data,	whereas	the	covariance	is	and	so	it	produces	better-defined	factor	structures	(Tinsley	&
Tinsley,	1987).	However,	the	covariance	matrix	should	be	analysed	only	when	your	variables	are	commensurable.

The	Extract	box	provides	options	pertaining	to	the	retention	of	factors.	You	have	the	choice	of	either
selecting	 factors	with	 eigenvalues	 greater	 than	 a	 user-specified	 value	 or	 retaining	 a	 fixed	 number	 of
factors.	For	the	Eigenvalues	greater	than	option	the	default	is	Kaiser’s	recommendation	of	eigenvalues
over	1,	but	you	could	change	this	to	Jolliffe’s	recommendation	of	0.7	or	any	other	value	you	want.	It	is
probably	best	 to	 run	a	primary	analysis	with	 the	Eigenvalues	greater	 than	 1	option	 selected,	 select	 a
scree	plot	and	compare	the	results.	If	 looking	at	the	scree	plot	and	the	eigenvalues	over	1	lead	you	to
retain	the	same	number	of	factors	then	continue	with	the	analysis	and	be	happy.	If	the	two	criteria	give
different	 results	 then	examine	 the	communalities	and	decide	 for	yourself	which	of	 the	 two	criteria	 to
believe.	 If	 you	 decide	 to	 use	 the	 scree	 plot	 then	 you	 may	 need	 to	 redo	 the	 analysis	 specifying	 the
number	of	factors	to	extract.	The	number	of	factors	to	be	extracted	can	be	specified	by	selecting	Fixed
number	of	factors	and	then	typing	the	appropriate	number	in	the	space	provided	(e.g.,	4).

17.6.2.	Rotation	②

We	 have	 already	 seen	 that	 the	 interpretability	 of	 factors	 can	 be	 improved	 through	 rotation	 (Section
17.4.6).	Click	on	 	to	access	the	dialog	box	in	Figure	17.12.	I’ve	discussed	the	various	rotation
options	in	Section	17.4.6.1,	but,	to	summarize,	if	there	are	theoretical	grounds	to	think	that	the	factors
are	 independent	 (unrelated)	 then	 you	 should	 choose	 one	 of	 the	 orthogonal	 rotations	 (I	 recommend
varimax)	but	if	theory	suggests	that	your	factors	might	correlate	then	one	of	the	oblique	rotations	(direct
oblimin	or	promax)	should	be	selected.	In	this	example	I’ve	selected	varimax.

The	dialog	box	also	has	options	for	displaying	the	Rotated	solution	and	a	Loading	plot.	The	rotated
solution	is	displayed	by	default	and	is	essential	for	interpreting	the	final	rotated	analysis.	The	loading
plot	 will	 provide	 a	 graphical	 display	 of	 each	 variable	 plotted	 against	 the	 extracted	 factors	 up	 to	 a
maximum	of	three	factors	(unfortunately	SPSS	cannot	produce	four-	or	five-dimensional	graphs).	This
plot	 is	basically	similar	 to	Figure	17.3	and	 it	uses	 the	 factor	 loading	of	each	variable	 for	each	 factor.



With	two	factors	these	plots	are	fairly	interpretable,	and	you	should	hope	to	see	one	group	of	variables
clustered	 close	 to	 the	 X-axis	 and	 a	 different	 group	 of	 variables	 clustered	 around	 the	 Y-axis.	 If	 all
variables	 are	 clustered	 between	 the	 axes,	 then	 the	 rotation	 has	 been	 relatively	 unsuccessful	 in
maximizing	the	loading	of	a	variable	on	a	single	factor.	With	three	factors	these	plots	will	strain	even
the	most	dedicated	visual	system,	so	unless	you	have	only	two	factors	I	would	probably	avoid	them.

FIGURE	17.11
Dialog	box	for	factor	extraction

A	 final	 option	 is	 to	 set	 the	Maximum	 Iterations	 for	 Convergence	 (see	 SPSS	 Tip	 19.1),	 which
specifies	 the	 number	 of	 times	 that	 the	 computer	 will	 search	 for	 an	 optimal	 solution.	 In	 most
circumstances	 the	default	of	25	 is	adequate;	however,	 if	you	get	an	error	message	about	convergence
then	increase	this	value.

FIGURE	17.12
Factor	Analysis:	Rotation	dialog	box



FIGURE	17.13
Factor	Analysis:	Factor	Scores	dialog	box

17.6.3.	Scores	②

The	Factor	Scores	dialog	box	(Figure	17.13)	can	be	accessed	by	clicking	on	 	in	the	main	dialog
box.	This	option	allows	you	to	save	factor	scores	(see	Section	17.3.3)	for	each	case	in	the	data	editor.
SPSS	 creates	 a	 new	 column	 for	 each	 factor	 extracted	 and	 then	 places	 the	 factor	 score	 for	 each	 case
within	that	column.	These	scores	can	then	be	used	for	further	analysis,	or	simply	to	identify	groups	of
participants	who	score	highly	on	particular	factors.	There	are	three	methods	of	obtaining	these	scores,
all	of	which	were	described	in	Section	17.3.3.	If	you	want	to	ensure	that	factor	scores	are	uncorrelated
then	select	the	Anderson-Rubin	method;	if	correlations	between	factor	scores	are	acceptable	then	choose
the	Regression	method.	As	 a	 final	 option,	 you	 can	 ask	 SPSS	 to	 produce	 the	 factor	 score	 coefficient
matrix.	This	matrix	is	used	to	compute	the	factor	scores,	but	realistically,	we	don’t	need	to	see	it.

17.6.4.	Options	②

The	Options	dialog	box	can	be	obtained	by	clicking	on	 	in	the	main	dialog	box	(Figure	17.14).
Missing	data	 are	 a	 problem	 for	 factor	 analysis	 just	 like	most	 other	 procedures,	 and	SPSS	provides	 a
choice	 of	 excluding	 cases	 or	 estimating	 a	 value	 for	 a	 case.	 Tabachnick	 and	 Fidell	 (2012)	 have	 an
excellent	chapter	on	data	screening	(see	also	the	rather	less	excellent	Chapter	5	of	this	book).	Based	on
their	advice,	you	should	consider	the	distribution	of	missing	data.	If	the	missing	data	are	non-normally
distributed	or	 the	sample	size	after	exclusion	is	 too	small	 then	estimation	is	necessary.	SPSS	uses	 the
mean	as	an	estimate	(Replace	with	mean).	These	procedures	lower	the	standard	deviation	of	variables
and	so	can	lead	to	significant	results	that	would	otherwise	be	non-significant.	Therefore,	if	missing	data
are	random,	you	might	consider	excluding	cases.	SPSS	allows	you	to	either	Exclude	cases	listwise,	 in
which	case	any	participant	with	missing	data	for	any	variable	is	excluded,	or	to	Exclude	cases	pairwise,
in	which	case	a	participant’s	data	are	excluded	only	from	calculations	for	which	a	datum	is	missing	(see
SPSS	Tip	5.1).	If	you	exclude	cases	pairwise	your	estimates	can	go	all	over	the	place,	so	it’s	probably



safest	to	opt	to	exclude	cases	listwise	unless	this	results	in	a	massive	loss	of	data.
The	final	two	options	relate	to	how	coefficients	are	displayed.	By	default,	SPSS	will	list	variables	in

the	order	in	which	they	are	entered	into	the	data	editor.	However,	when	interpreting	factors	it	is	useful	to
list	variables	by	size.	By	selecting	Sorted	by	size,	SPSS	will	order	the	variables	by	their	factor	loadings.
In	fact,	 it	does	 this	sorting	fairly	 intelligently	so	that	all	of	 the	variables	 that	 load	highly	on	the	same
factor	 are	 displayed	 together.	The	 second	 option	 is	 to	Suppress	 absolute	 values	 less	 than	 a	 specified
value	 (by	 default	 0.1).	 This	 option	 ensures	 that	 factor	 loadings	within	 ±0.1	 are	 not	 displayed	 in	 the
output.	Again,	this	option	is	useful	for	interpretation.	The	default	value	is	probably	sensible,	but	on	your
first	 analysis	 I	 recommend	 changing	 it	 either	 to	 .3	 or	 to	 a	 value	 reflecting	 the	 expected	 value	 of	 a
significant	 factor	 loading	 given	 the	 sample	 size	 (see	 Section	 17.4.6.2).	 This	will	make	 interpretation
simpler.	We	know	that	a	loading	of	.4	is	substantial,	but	so	we	don’t	throw	out	the	baby	with	the	bath
water,	setting	the	value	to	0.3	is	sensible:	we	will	see	not	only	the	substantial	loadings	but	those	close	to
the	cut-off	(e.g.,	a	loading	of	.39).	For	this	example	set	the	value	at	.3.

FIGURE	17.14
Factor	Analysis:	options	dialog	box

ODITI’S	LANTERN

PCA
‘I,	Oditi,	feel	that	we	are	getting	closer	to	finding	the	hidden	truths	behind	the	numbers.	Factor	analysis	allows	us	to	estimate	variables
“hidden”	within	the	data.	This	technique	is	the	very	essence	of	the	cult	of	undiscovered	numerical	truths.	Once	we	have	mastered	this
tool	we	can	find	out	what	people	are	really	thinking,	even	if	they	don’t	know	they’re	thinking	it.	We	might	find	that	they	think	that	they
think	 I’m	 the	kind	saviour	of	cute	 furry	gerbils,	but	 that	underneath	 they	know	the	 truth	…	stare	 into	my	 lantern	 to	discover	 factor
analysis.’



17.7.	Interpreting	output	from	SPSS	②

Select	 the	 same	 options	 as	 I	 have	 in	 the	 screen	 diagrams	 and	 run	 a	 factor	 analysis	 with	 orthogonal
rotation.
	

SELF-TEST	Having	done	this,	select	the	Direct	Oblimin	option	in	Figure	17.12	and	repeat
the	analysis.	You	should	obtain	two	outputs	identical	in	all	respects	except	that	one	used	an
orthogonal	rotation	and	the	other	an	oblique.

To	save	space	I	set	the	default	SPSS	options	such	that	each	variable	is	referred	to	only	by	its	label	on
the	data	editor	 (e.g.,	Question_12).	On	 the	output	you	obtain,	you	should	 find	 that	 the	SPSS	uses	 the
value	label	(the	question	itself)	in	all	of	the	output.	When	using	the	output	refer	back	to	Figure	17.6	to
remind	you	of	what	each	question	was.

When	 you	 factor-analyse	 your	 own	 data,	 you	might	 be	 unlucky	 enough	 to	 see	 an	 error	message
about	a	‘non-positive	definite	matrix’	(see	SPSS	Tip	17.2).	A	‘non-positive	definite	matrix’	sounds	a	bit
like	a	collection	of	depressed	numbers	that	lack	certainty	about	their	lives.	In	some	ways	it	is.

17.7.1.	Preliminary	analysis	②

The	first	body	of	output	concerns	data	screening,	assumption	testing	and	sampling	adequacy.	You’ll	find
several	 large	 tables	 (or	 matrices)	 that	 tell	 us	 interesting	 things	 about	 our	 data.	 If	 you	 selected	 the
Univariate	descriptives	option	in	Figure	17.10	then	the	first	table	will	contain	descriptive	statistics	for
each	variable	(the	mean,	standard	deviation	and	number	of	cases).	This	table	is	not	included	here,	but
you	 should	 have	 enough	 experience	 to	 be	 able	 to	 interpret	 it.	 The	 table	 also	 includes	 the	 number	 of
missing	cases;	this	summary	is	a	useful	way	to	determine	the	extent	of	missing	data.

SPSS	TIP	17.2 	Error	messages	about	a	‘non-positive	definite	matrix’	④
Factor	analysis	works	by	looking	at	your	correlation	matrix.	This	matrix	has	to	be	‘positive	definite’	for	the	analysis	to	work.	This	term
means	 lots	of	horrible	 things	mathematically	 (e.g.,	 the	eigenvalues	and	determinant	of	 the	matrix	have	 to	be	positive),	but,	 in	more
basic	terms,	factors	are	like	lines	floating	in	space,	and	eigenvalues	measure	the	length	of	those	lines.	If	your	eigenvalue	is	negative
then	it	means	that	the	length	of	your	line/factor	is	negative	too.	It’s	a	bit	like	me	asking	you	how	tall	you	are,	and	you	responding	‘I’m



minus	175	cm	tall’.	That	would	be	nonsense.	If	a	factor	has	negative	length,	then	that	is	nonsense	too.	When	SPSS	decomposes	the
correlation	matrix	 to	 look	 for	 factors,	 if	 it	 comes	 across	 a	 negative	 eigenvalue	 it	 starts	 thinking	 ‘oh	 dear,	 I’ve	 entered	 some	weird
parallel	universe	where	the	usual	rules	of	maths	no	longer	apply	and	things	can	have	negative	lengths,	and	this	probably	means	that
time	runs	backwards,	my	mum	is	my	dad,	my	sister	is	a	dog,	my	head	is	a	fish,	and	my	toe	is	a	frog	called	Gerald’.	It	does	the	sensible
thing	and	decides	not	to	proceed.	Things	like	the	KMO	test	and	the	determinant	rely	on	a	positive	definite	matrix;	if	you	don’t	have	one
they	can’t	be	computed.

The	most	likely	reason	for	having	a	non-positive	definite	R-matrix	is	that	you	have	too	many	variables	and	too	few	cases	of	data,
which	makes	 the	 correlation	matrix	 a	 bit	 unstable.	 It	 could	 also	 be	 that	 you	 have	 too	many	highly	 correlated	 items	 in	 your	matrix
(singularity,	for	example,	tends	to	mess	things	up).	In	any	case	it	means	that	your	data	are	bad,	naughty	data,	and	not	to	be	trusted;	if
you	let	them	loose	then	you	have	only	yourself	to	blame	for	the	consequences.

Other	than	cry,	there’s	not	that	much	you	can	do	to	rectify	the	situation.	You	could	try	to	limit	your	items,	or	selectively	remove
items	(especially	highly	correlated	ones)	to	see	if	that	helps.	Collecting	more	data	can	help	too.	There	are	some	mathematical	fudges
you	can	do,	but	they’re	not	as	tasty	as	vanilla	fudge	and	they	are	hard	to	implement.

OUTPUT	17.1

Output	17.1	shows	 the	R-matrix	 (i.e.,	 the	correlation	matrix)6	produced	using	 the	Coefficients	and
Significance	levels	options	in	Figure	17.10.	The	 top	half	of	 this	 table	contains	 the	Pearson	correlation
coefficient	between	all	pairs	of	questions,	whereas	the	bottom	half	contains	the	one-tailed	significance
of	these	coefficients.	We	can	use	this	correlation	matrix	to	check	the	pattern	of	relationships.	First,	scan
the	matrix	 for	 correlations	 greater	 than	 .3,	 and	 look	 for	 variables	 that	 only	 have	 a	 small	 number	 of
correlations	greater	than	this	value.	Then	scan	the	correlation	coefficients	themselves	and	look	for	any
greater	 than	 .9.	 If	 any	 are	 found	 then	 you	 should	 be	 aware	 that	 a	 problem	 could	 arise	 because	 of
multicollinearity	in	the	data.

You	can	also	check	the	determinant	of	the	correlation	matrix	and,	if	necessary,	eliminate	variables
that	you	think	are	causing	the	problem.	The	determinant	is	listed	at	the	bottom	of	the	matrix	(blink	and
you’ll	miss	it).	For	these	data	its	value	is	.001,	which	is	greater	than	the	necessary	value	of	0.00001	(see
Section	17.6).7	To	sum	up,	all	questions	in	the	SAQ	correlate	reasonably	well	with	all	others	and	none
of	the	correlation	coefficients	are	excessively	large;	therefore,	we	won’t	eliminate	any	questions	at	this
stage.



If	you	selected	the	Inverse	option	in	Figure	17.10	you’ll	find	the	inverse	of	the	correlation	matrix	(R
−1)	in	your	output	(labelled	Inverse	of	Correlation	Matrix).	This	matrix	is	used	in	various	calculations
(including	 factor	 scores	 –	 see	 Section	 17.3.3.1),	 but	 in	 all	 honesty	 is	 useful	 only	 if	 you	 want	 some
insight	into	the	calculations	that	go	on	in	a	factor	analysis.	Most	of	us	have	more	interesting	things	to
do,	so	ignore	it.

If	you	selected	the	KMO	and	Bartlett’s	test	of	sphericity	and	the	Anti-image	options	in	Figure	17.10
then	your	output	will	contain	the	Kaiser–Meyer–Olkin	measure	of	sampling	adequacy	and	Bartlett’s	test
of	sphericity	(Output	17.2)	and	the	anti-image	correlation	and	covariance	matrices	(an	edited	version	is
in	 Output	 17.3).	 The	 anti-image	 correlation	 and	 covariance	 matrices	 provide	 similar	 information
(remember	the	relationship	between	covariance	and	correlation)	and	so	only	the	anti-image	correlation
matrix	need	be	studied	in	detail	because	it	is	the	most	informative.

For	 the	KMO	statistic	 the	value	 is	 .93,	which	 is	well	above	 the	minimum	criterion	of	 .5	and	falls
into	the	range	of	‘marvellous’	(see	Section	17.5.2.1),	so	we	should	be	confident	that	the	sample	size	is
adequate	for	factor	analysis.	I	mentioned	before	that	KMO	can	be	calculated	for	multiple	and	individual
variables.	 The	KMO	 values	 for	 individual	 variables	 are	 produced	 on	 the	 diagonal	 of	 the	 anti-image
correlation	matrix	(I	have	highlighted	these	cells	in	Output	17.3).	As	well	as	checking	the	overall	KMO
statistic,	 we	 should	 examine	 the	 diagonal	 elements	 of	 the	 anti-image	 correlation	 matrix:	 the	 values
should	all	be	above	the	bare	minimum	of	.5	(and	preferably	higher).	For	these	data	all	values	are	well
above	.5,	which	is	good	news.	If	you	find	any	variables	with	values	below	0.5	then	you	should	consider
excluding	 them	 from	 the	 analysis	 (or	 run	 the	 analysis	 with	 and	 without	 that	 variable	 and	 note	 the
difference).	Removal	of	a	variable	affects	the	KMO	statistics,	so	if	you	do	remove	a	variable	be	sure	to
re-examine	the	new	anti-image	correlation	matrix.	As	for	the	rest	of	the	anti-image	correlation	matrix,
the	off-diagonal	elements	represent	the	partial	correlations	between	variables.	For	a	good	factor	analysis
we	want	these	correlations	to	be	very	small	(the	smaller,	the	better).	So,	as	a	final	check	you	can	look
through	to	see	that	the	off-diagonal	elements	are	small	(they	should	be	for	these	data).

Bartlett’s	measure	(Output	17.2)	 tests	 the	null	hypothesis	 that	 the	original	correlation	matrix	 is	an
identity	matrix.	We	want	this	test	to	be	significant	(see	Section	17.5.2.2).	As	I	mentioned	before,	given
the	large	sample	sizes	usually	used	in	factor	analysis	this	test	will	almost	certainly	be	significant,	and	it
is	 (p	 <	 .001).	A	 non-significant	 test	would	 certainly	 indicate	 a	massive	 problem,	 but	 this	 significant
value	only	really	tells	us	that	we	don’t	have	a	massive	problem,	which	is	nice	to	know,	I	suppose.

OUTPUT	17.2



OUTPUT	17.3

CRAMMING	SAM’S	TIPS 	Preliminary	analysis
Scan	the	correlation	matrix;	look	for	variables	that	don’t	correlate	with	any	other	variables,	or	correlate	very	highly	(r	=	.9)	with
one	or	more	other	variables.
In	factor	analysis,	check	that	the	determinant	of	this	matrix	is	bigger	than	0.00001;	if	it	is	then	multicollinearity	isn’t	a	problem.
In	the	table	labelled	KMO	and	Bartlett’s	Test	the	KMO	statistic	should	be	greater	than	.5	as	a	bare	minimum;	if	it	isn’t,	collect
more	data.	You	should	check	the	KMO	statistic	for	individual	variables	by	looking	at	the	diagonal	of	the	anti-image	matrices
again,	these	values	should	be	above	.5	(this	is	useful	for	identifying	problematic	variables	if	the	overall	KMO	is	unsatisfactory).
Bartlett’s	test	of	sphericity	will	usually	be	significant	(the	value	of	Sig.	will	be	less	than	.05);	if	it’s	not	you’ve	got	a	disaster	on
your	hands.

17.7.2.	Factor	extraction	②

The	first	part	of	the	factor	extraction	process	is	to	determine	the	linear	components	within	the	data	set
(the	 eigenvectors)	by	calculating	 the	 eigenvalues	of	 the	R-matrix	 (see	Section	17.4.4).	We	 know	 that
there	are	as	many	components	 (eigenvectors)	 in	 the	R-matrix	as	 there	are	variables,	but	most	will	be
unimportant.	 To	 determine	 the	 importance	 of	 a	 particular	 vector	 we	 look	 at	 the	 magnitude	 of	 the
associated	 eigenvalue.	We	 can	 then	 apply	 criteria	 to	 determine	which	 factors	 to	 retain	 and	which	 to
discard.	By	default	SPSS	uses	Kaiser’s	criterion	of	retaining	factors	with	eigenvalues	greater	than	1	(see
Figure	17.11).

Output	17.4	lists	the	eigenvalues	associated	with	each	factor	before	extraction,	after	extraction	and
after	rotation.	Before	extraction,	SPSS	has	identified	23	factors	within	the	data	set	(we	know	that	there
should	be	as	many	eigenvectors	as	there	are	variables	and	so	there	will	be	as	many	factors	as	variables	–
see	Section	17.4.4).	 The	 eigenvalues	 associated	with	 each	 factor	 represent	 the	 variance	 explained	 by
that	 particular	 factor;	 SPSS	 also	 displays	 the	 eigenvalue	 in	 terms	 of	 the	 percentage	 of	 variance
explained	(so	factor	1	explains	31.696%	of	total	variance).	The	first	few	factors	explain	relatively	large
amounts	 of	 variance	 (especially	 factor	 1),	whereas	 subsequent	 factors	 explain	 only	 small	 amounts	 of



variance.	 SPSS	 then	 extracts	 all	 factors	 with	 eigenvalues	 greater	 than	 1,	 which	 leaves	 us	 with	 four
factors.	 The	 eigenvalues	 associated	 with	 these	 factors	 are	 again	 displayed	 (and	 the	 percentage	 of
variance	explained)	in	the	columns	labelled	Extraction	Sums	of	Squared	Loadings.	 In	the	final	part	of
the	table	(labelled	Rotation	Sums	of	Squared	Loadings),	the	eigenvalues	of	the	factors	after	rotation	are
displayed.	Rotation	has	the	effect	of	optimizing	the	factor	structure,	and	one	consequence	for	these	data
is	that	the	relative	importance	of	the	four	factors	is	equalized	a	bit.	Before	rotation,	factor	1	accounted
for	 considerably	 more	 variance	 than	 the	 remaining	 three	 (29.32%	 compared	 to	 4.90%,	 3.54%	 and
2.71%),	 but	 after	 rotation	 it	 accounts	 for	 only	 13.19%	of	 variance	 (compared	 to	 12.42%,	 8.64%	and
6.24%,	respectively).

OUTPUT	17.4

Output	17.5	(left)	shows	the	table	of	communalities	before	and	after	extraction.	Remember	that	the
communality	 is	 the	 proportion	 of	 common	 variance	 within	 a	 variable	 (see	 Section	 17.4.1).	 Factor
analysis	 starts	 by	 estimating	 the	 variance	 that	 is	 common;	 therefore,	 before	 extraction	 the
communalities	are	a	kind	of	best	guess.	Once	factors	have	been	extracted,	we	have	a	better	idea	of	how
much	variance	is,	in	reality,	common.	The	communalities	in	the	column	labelled	Extraction	reflect	this
common	variance.	So,	for	example,	we	can	say	that	37.3%	of	the	variance	associated	with	question	1	is
common,	or	shared,	variance.	Another	way	to	look	at	these	communalities	is	in	terms	of	the	proportion
of	 variance	 explained	 by	 the	 underlying	 factors.	 Remember	 that	 after	 extraction	 we	 have	 discarded
some	factors	(in	this	case	we’ve	retained	only	four),	so	the	communalities	after	extraction	represent	the
amount	of	variance	in	each	variable	that	can	be	explained	by	the	retained	factors.



OUTPUT	17.5

Output	17.5	(right)	also	shows	the	factor	matrix	before	rotation.	This	matrix	contains	the	loadings	of
each	 variable	 on	 each	 factor.	 By	 default	 SPSS	 displays	 all	 loadings;	 however,	 we	 requested	 that	 all
loadings	less	 than	.3	be	suppressed	in	the	output	(see	Figure	17.14)	and	so	 there	are	blank	spaces	 for
many	of	the	loadings.	This	matrix	is	not	particularly	important	for	interpretation,	but	it	is	interesting	to
note	that	before	rotation	most	variables	load	highly	on	the	first	factor	(that	is	why	this	factor	accounts
for	most	of	the	variance	in	Output	17.4).

Factor	 analysis	 is	 an	 exploratory	 tool	 and	 so	 it	 should	 be	 used	 to	 guide	 the	 researcher	 to	 make
various	 decisions:	 you	 shouldn’t	 leave	 the	 computer	 to	 make	 them.	 One	 important	 decision	 is	 the
number	 of	 factors	 to	 extract	 (Section	 17.4.5).	 By	 Kaiser’s	 criterion	 we	 should	 extract	 four	 factors
(which	 is	 what	 SPSS	 has	 done);	 however,	 this	 criterion	 is	 accurate	 when	 there	 are	 fewer	 than	 30
variables	and	communalities	after	extraction	are	greater	than	.7,	or	when	the	sample	size	exceeds	250
and	 the	 average	 communality	 is	 greater	 than	 .6.	No	 communalities	 exceed	 .7	 (Output	 17.5),	 and	 the
average	communality	can	be	found	by	adding	 them	up	and	dividing	by	 the	number	of	communalities
(9.31/23	=	.405).	So,	both	of	these	criteria	suggest	Kaiser’s	rule	might	be	inappropriate	for	these	data.
We	could	use	 Jolliffe’s	 criterion	 (retain	 factors	with	eigenvalues	greater	 than	 .7),	but	 there	 is	 little	 to
recommend	this	criterion	over	Kaiser’s	and	we’d	end	up	with	10	factors	(see	Output	17.4).	Finally,	we
could	use	 the	 scree	plot,	which	we	asked	SPSS	 to	produce	by	using	 the	option	 in	Figure	17.11.	This
curve	is	difficult	to	interpret	because	there	are	points	of	inflexion	at	both	3	and	5	factors	(Output	17.6).
Therefore,	we	could	probably	justify	retaining	either	two	or	four	factors.

So	how	many	factors	should	we	extract?	We	need	to	consider	that	the	recommendations	for	Kaiser’s
criterion	are	for	much	smaller	samples	than	we	have.	Therefore,	given	our	huge	sample,	and	given	that
there	is	some	consistency	between	Kaiser’s	criterion	and	the	scree	plot,	it	is	reasonable	to	extract	four
factors;	however,	you	might	like	to	rerun	the	analysis	specifying	that	SPSS	extract	only	two	factors	(see
Figure	17.11)	and	compare	the	results.

Output	17.7	shows	an	edited	version	of	the	reproduced	correlation	matrix	that	was	requested	using
the	option	in	Figure	17.10.	The	top	half	of	this	matrix	(labelled	Reproduced	Correlations)	contains	the



correlation	 coefficients	 between	 all	 of	 the	 questions	 based	 on	 the	 factor	model.	 The	 diagonal	 of	 this
matrix	contains	the	communalities	after	extraction	for	each	variable	(you	can	check	the	values	against
Output	17.5).

OUTPUT	17.6

OUTPUT	17.7

The	correlations	in	the	reproduced	matrix	differ	from	those	in	the	R-matrix	because	they	stem	from
the	model	rather	than	the	observed	data.	If	the	model	were	a	perfect	fit	of	the	data	then	we	would	expect
the	reproduced	correlation	coefficients	to	be	the	same	as	the	original	correlation	coefficients.	Therefore,
to	assess	the	fit	of	the	model	we	can	look	at	the	differences	between	the	observed	correlations	and	the
correlations	based	on	the	model.	For	example,	if	we	take	the	correlation	between	questions	1	and	2,	the
correlation	based	on	the	observed	data	is	−.099	(taken	from	Output	17.1).	The	correlation	based	on	the
model	is	−.112,	which	is	slightly	higher.	We	can	calculate	the	difference	as	follows:



You	 should	notice	 that	 this	difference	 is	 the	value	quoted	 in	 the	 lower	half	 of	 the	 reproduced	matrix
(labelled	 Residual)	 for	 questions	 1	 and	 2	 (highlighted	 in	 blue).	 Therefore,	 the	 lower	 half	 of	 the
reproduced	matrix	contains	the	differences	between	the	observed	correlation	coefficients	and	the	ones
predicted	from	the	model.	For	a	good	model	these	values	will	all	be	small.	In	fact,	we	want	most	values
to	be	less	than	.05.	Rather	than	scan	this	huge	matrix,	SPSS	provides	a	footnote	summary,	which	states
how	many	residuals	have	an	absolute	value	greater	than	.05.	For	these	data	there	are	only	12	residuals
(4%)8	 that	 are	 greater	 than	 .05.	 There	 are	 no	 hard-and-fast	 rules	 about	 what	 proportion	 of	 residuals
should	be	below	 .05;	however,	 if	more	 than	50%	are	greater	 than	 .05	you	probably	have	grounds	 for
concern.	For	these	data	we	have	around	4%,	which	is	certainly	nothing	to	worry	about.

CRAMMING	SAM’S	TIPS 	Factor	extraction
To	decide	how	many	factors	to	extract,	look	at	the	table	labelled	Communalities	and	the	column	labelled	Extraction.	If	these
values	are	all	.7	or	above	and	you	have	less	than	30	variables	then	the	SPSS	default	(Kaiser’s	criterion)	for	extracting	factors	is
fine.	Likewise,	if	your	sample	size	exceeds	250	and	the	average	of	the	communalities	is	.6	or	greater	then	the	default	option	is
fine.	Alternatively,	with	200	or	more	participants	the	scree	plot	can	be	used.
Check	the	bottom	of	the	table	labelled	Reproduced	Correlations	for	the	percentage	of	‘nonredundant	residuals	with	absolute
values	greater	than	0.05’.	This	percentage	should	be	less	than	50%	and	the	smaller	it	is,	the	better.

17.7.3.	Factor	rotation	②

The	 first	analysis	 I	asked	you	 to	 run	was	using	an	orthogonal	 rotation.	However,	 I	also	asked	you	 to
rerun	the	analysis	using	oblique	rotation.	In	this	section	the	results	of	both	analyses	will	be	reported	so
as	to	highlight	the	differences	between	the	outputs.	This	comparison	will	also	be	a	useful	way	to	show
the	circumstances	in	which	one	type	of	rotation	might	be	preferable	to	another.

17.7.3.1.	Orthogonal	rotation	(varimax)	②

Output	17.8	shows	the	rotated	factor	matrix	(called	the	rotated	component	matrix	in	PCA),	which	is	a
matrix	of	the	factor	loadings	for	each	variable	on	each	factor.	This	matrix	contains	the	same	information
as	the	factor	matrix	in	Output	17.5,	except	that	it	is	calculated	after	rotation.	There	are	several	things	to
consider	 about	 the	 format	 of	 this	matrix.	 First,	 factor	 loadings	 less	 than	 .3	 have	 not	 been	 displayed
because	we	 asked	 for	 these	 loadings	 to	 be	 suppressed	 using	 the	 option	 in	 Figure	17.14.	 Second,	 the
variables	are	 listed	 in	 the	order	of	size	of	 their	 factor	 loadings	because	we	asked	for	 the	output	 to	be
Sorted	by	size	using	the	option	in	Figure	17.14.	If	this	option	was	not	selected	the	variables	would	be
listed	in	the	order	they	appear	in	the	data	editor.	Finally,	for	all	other	parts	of	the	output	I	suppressed	the
variable	labels	(to	save	space),	but	for	this	output	I	have	used	the	variable	labels	to	aid	interpretation.



Compare	this	matrix	to	the	unrotated	solution	(Output	17.5).	Before	rotation,	most	variables	loaded
highly	on	the	first	factor	and	the	remaining	factors	didn’t	really	get	a	look-in.	However,	the	rotation	of
the	factor	structure	has	clarified	things	considerably:	there	are	four	factors	and	most	variables	load	very
highly	on	only	one	factor.9	In	cases	where	a	variable	loads	highly	on	more	than	one	factor	the	loading	is
typically	higher	 for	one	factor	 than	another.	For	example,	 ‘SPSS	always	crashes	when	I	 try	 to	use	 it’
loads	on	both	factor	1	and	2,	but	the	loading	for	factor	2	(.612)	is	higher	than	for	factor	1	(.366),	so	it
makes	sense	to	 think	of	 it	as	part	of	factor	2	more	than	factor	1.	Remember	 that	every	variable	has	a
loading	on	every	factor,	it	just	appears	as	though	they	don’t	in	Output	17.8	because	we	asked	that	they
not	be	printed	if	they	were	lower	than	.3.

The	 next	 step	 is	 to	 look	 at	 the	 content	 of	 questions	 that	 load	 highly	 on	 the	 same	 factor	 to	 try	 to
identify	common	themes.	If	the	mathematical	factors	represent	some	real-world	construct	then	common
themes	among	highly	loading	questions	can	help	us	identify	what	the	construct	might	be.	The	questions
that	load	highly	on	factor	1	seem	to	relate	to	different	aspects	of	statistics;	therefore,	we	might	label	this
factor	fear	of	statistics.	The	questions	that	load	highly	on	factor	2	all	seem	to	relate	to	using	computers
or	SPSS.	Therefore	we	might	label	this	factor	fear	of	computers.	The	three	questions	that	load	highly	on
factor	 3	 all	 seem	 to	 relate	 to	mathematics;	 therefore,	we	might	 label	 this	 factor	 fear	 of	mathematics.
Finally,	 the	questions	 that	 load	highly	on	 factor	4	contain	 some	component	of	 social	evaluation	 from
friends;	 therefore,	we	might	 label	 this	 factor	peer	 evaluation.	 This	 analysis	 seems	 to	 reveal	 that	 the
questionnaire	is	composed	of	four	subscales:	fear	of	statistics,	fear	of	computers,	fear	of	maths	and	fear
of	negative	peer	evaluation.	There	are	two	possibilities	here.	The	first	is	that	the	SAQ	failed	to	measure
what	it	set	out	to	(namely,	SPSS	anxiety)	but	does	measure	some	related	constructs.	The	second	is	that
these	 four	 constructs	 are	 sub-components	 of	 SPSS	 anxiety;	 however,	 the	 factor	 analysis	 does	 not
indicate	which	of	these	possibilities	is	true.

OUTPUT	17.8

17.7.3.2.	Oblique	rotation	②

When	an	oblique	rotation	 is	conducted	 the	factor	matrix	 is	split	 into	 two	matrices:	 the	pattern	matrix
and	the	structure	matrix	(see	Jane	Superbrain	Box	17.1).	For	orthogonal	rotation	these	matrices	are	the



same.	The	pattern	matrix	 contains	 the	 factor	 loadings	 and	 is	 comparable	 to	 the	 factor	matrix	 that	we
interpreted	for	the	orthogonal	rotation.	The	structure	matrix	takes	into	account	the	relationship	between
factors	(in	fact	it	is	a	product	of	the	pattern	matrix	and	the	matrix	containing	the	correlation	coefficients
between	factors).	Most	researchers	interpret	the	pattern	matrix,	because	it	is	usually	simpler;	however,
there	 are	 situations	 in	 which	 values	 in	 the	 pattern	 matrix	 are	 suppressed	 because	 of	 relationships
between	the	factors.	Therefore,	the	structure	matrix	is	a	useful	double-check	and	Graham	et	al.	(2003)
recommend	reporting	both	(with	some	useful	examples	of	why	this	can	be	important).

For	 the	 pattern	matrix	 for	 these	 data	 (Output	17.9)	 the	 same	 four	 factors	 seem	 to	 have	 emerged.
Factor	 1	 seems	 to	 represent	 fear	 of	 statistics,	 factor	 2	 represents	 fear	 of	 peer	 evaluation,	 factor	 3
represents	fear	of	computers	and	factor	4	represents	fear	of	mathematics.	The	structure	matrix	(Output
17.10)	differs	 in	 that	shared	variance	 is	not	 ignored.	The	picture	becomes	more	complicated	because,
with	the	exception	of	factor	2,	several	variables	load	highly	on	more	than	one	factor.	This	has	occurred
because	of	the	relationship	between	factors	1	and	3	and	between	factors	3	and	4.	This	example	should
highlight	why	 the	pattern	matrix	 is	preferable	 for	 interpretative	reasons:	 it	contains	 information	about
the	unique	contribution	of	a	variable	to	a	factor.

The	final	part	of	the	output	is	a	correlation	matrix	between	the	factors	(Output	17.11).	This	matrix
contains	 the	correlation	coefficients	between	 factors.	As	predicted	 from	 the	 structure	matrix,	 factor	2
has	fairly	small	relationships	with	the	other	factors,	but	all	other	factors	have	fairly	large	correlations.
The	 fact	 that	 these	 correlations	 exist	 tells	 us	 that	 the	 constructs	measured	 can	 be	 interrelated.	 If	 the
constructs	were	independent	then	we	would	expect	oblique	rotation	to	provide	an	identical	solution	to
an	 orthogonal	 rotation	 and	 the	 factor	 correlation	matrix	 should	 be	 an	 identity	matrix	 (i.e.,	 all	 factors
have	correlation	coefficients	of	0).	Therefore,	this	matrix	can	be	used	to	assess	whether	it	is	reasonable
to	assume	independence	between	factors:	for	these	data	it	appears	that	we	cannot	assume	independence
and	so	the	obliquely	rotated	solution	is	probably	a	better	representation	of	reality.

OUTPUT	17.9



CRAMMING	SAM’S	TIPS 	Interpretation
If	you’ve	conduced	orthogonal	rotation	then	look	at	the	table	labelled	Rotated	Component	Matrix.	For	each	variable,	note	the
factor/component	for	which	the	variable	has	the	highest	loading	(by	‘high’	I	mean	loadings	above	.4	when	you	ignore	the	plus	or
minus	sign).	Try	to	make	sense	of	what	the	factors	represent	by	looking	for	common	themes	in	the	items	that	load	on	them.
If	you’ve	conducted	oblique	rotation	then	do	the	same	as	above	but	for	the	table	labelled	Pattern	Matrix.	Double-check	what	you
find	by	doing	the	same	thing	for	the	structure	matrix.

OUTPUT	17.10

OUTPUT	17.11

On	a	theoretical	level	the	dependence	between	our	factors	does	not	cause	concern;	we	might	expect
a	fairly	strong	relationship	between	fear	of	maths,	fear	of	statistics	and	fear	of	computers.	Generally,	the
less	 mathematically	 and	 technically	 minded	 people	 struggle	 with	 statistics.	 However,	 we	 would	 not
necessarily	 expect	 these	 constructs	 to	 correlate	 strongly	 with	 fear	 of	 peer	 evaluation	 (because	 this
construct	is	more	socially	based).	In	fact,	this	factor	is	the	one	that	correlates	the	least	with	all	others	–
so,	on	a	theoretical	level,	things	have	turned	out	rather	well.



17.7.4.	Factor	scores	②

Having	reached	a	suitable	solution	and	rotated	that	solution,	we	can	look	at	the	factor	scores.	SPSS	will
display	the	component	score	matrix	B	(see	Section	17.3.3.1)	from	which	the	factor	scores	are	calculated.
I	haven’t	reproduced	this	table	here	because	I	can’t	think	of	a	reason	why	most	people	would	want	to
look	at	 it.	 In	 the	original	analysis	we	asked	for	scores	 to	be	calculated	based	on	 the	Anderson–Rubin
method.	You	will	find	these	scores	in	the	data	editor.	There	should	be	four	new	columns	of	data	(one	for
each	 factor)	 labelled	 FAC1_1,	 FAC2_1,	 FAC3_1	 and	 FAC4_1,	 respectively.	 If	 you	 asked	 for	 factor
scores	 in	 the	 oblique	 rotation	 then	 these	 scores	will	 appear	 in	 the	 data	 editor	 in	 four	 other	 columns
labelled	FAC2_1	and	so	on.
	

SELF-TEST	Using	what	you	learnt	in	Section	8.7.6,	use	the	Case	Summaries	command	to	list
the	factor	scores	for	these	data	(given	that	there	are	over	2500	cases,	you	might	like	to
restrict	the	output	to	the	first	10).

OUTPUT	17.12

Output	 17.12	 shows	 the	 factor	 scores	 for	 the	 first	 10	 participants.	 It	 should	 be	 pretty	 clear	 that
participant	 9	 scored	 highly	 on	 factors	 1	 to	 3	 and	 so	 this	 person	 is	 very	 anxious	 about	 statistics,
computing	and	maths,	but	less	so	about	peer	evaluation	(factor	4).	Factor	scores	can	be	used	in	this	way
to	assess	the	relative	fear	of	one	person	compared	to	another,	or	we	could	add	the	scores	up	to	obtain	a
single	score	for	each	participant	(which	we	might	assume	represents	SPSS	anxiety	as	a	whole).	We	can
also	 use	 factor	 scores	 in	 regression	 when	 groups	 of	 predictors	 correlate	 so	 highly	 that	 there	 is
multicollinearity.	However,	people	do	not	normally	use	factor	scores	themselves	but	instead	sum	scores
on	 items	 that	 they	have	decided	 load	on	 the	 same	 factor	 (e.g.,	 create	a	 score	 for	 statistics	 anxiety	by
adding	up	a	person’s	scores	on	items	1,	3,	4,	5,	12,	16,	20	and	21).

17.7.5.	Summary	②



To	sum	up,	the	analyses	revealed	four	underlying	scales	in	our	questionnaire	that	may	or	may	not	relate
to	genuine	sub-components	of	SPSS	anxiety.	It	also	seems	as	though	an	obliquely	rotated	solution	was
preferred	due	to	the	interrelationships	between	factors.	The	use	of	factor	analysis	is	purely	exploratory;
it	should	be	used	only	 to	guide	future	hypotheses,	or	 to	 inform	researchers	about	patterns	within	data
sets.	A	 great	many	 decisions	 are	 left	 to	 the	 researcher	 using	 factor	 analysis	 and	 I	 urge	 you	 to	make
informed	 decisions,	 rather	 than	 basing	 decisions	 on	 the	 outcomes	 you	 would	 like	 to	 get.	 The	 next
question	is	whether	or	not	our	scale	is	reliable.

17.8.	How	to	report	factor	analysis	①

When	 reporting	 factor	 analysis	 we	 should	 provide	 our	 readers	 with	 enough	 information	 to	 form	 an
informed	opinion	about	what	we’ve	done.	We	should	be	clear	about	our	criteria	for	extracting	factors
and	 the	method	of	 rotation	used.	We	should	also	produce	a	 table	of	 the	 rotated	 factor	 loadings	of	all
items	and	flag	(in	bold)	values	above	a	criterion	level	(I	would	personally	choose	.40,	but	see	Section
17.4.6.2).	We	should	also	report	 the	percentage	of	variance	 that	each	factor	explains	and	possibly	 the
eigenvalue	too.	Table	17.1	shows	an	example	of	such	a	table	for	the	SAQ	data	(oblique	rotation);	note
that	I	have	also	reported	the	sample	size	in	the	title.

In	my	opinion,	a	table	of	factor	loadings	and	a	description	of	the	analysis	are	a	bare	minimum.	You
could	 consider	 (if	 it’s	 not	 too	 large)	 including	 the	 table	 of	 correlations	 from	 which	 someone	 could
reproduce	your	analysis	(should	they	want	to),	and	some	information	on	sample	size	adequacy.	For	this
example	we	might	write	something	like	this:

A	principal	axis	factor	analysis	was	conducted	on	the	23	items	with	oblique	rotation	(direct
oblimin).	The	Kaiser–Meyer–Olkin	measure	verified	the	sampling	adequacy	for	the	analysis,
KMO	=	.93	(‘marvellous’	according	to	Hutcheson	&	Sofroniou,	1999),	and	all	KMO	values
for	individual	items	were	greater	than	.77,	which	is	well	above	the	acceptable	limit	of	.5	(Field,
2013).	An	initial	analysis	was	run	to	obtain	eigenvalues	for	each	factor	in	the	data.	Four	factors
had	eigenvalues	over	Kaiser’s	criterion	of	1	and	in	combination	explained	50.32%	of	the
variance.	The	scree	plot	was	ambiguous	and	showed	inflexions	that	would	justify	retaining
either	2	or	4	factors.	We	retained	4	factors	because	of	the	large	sample	size	and	the
convergence	of	the	scree	plot	and	Kaiser’s	criterion	on	this	value.	Table	17.1	shows	the	factor
loadings	after	rotation.	The	items	that	cluster	on	the	same	factor	suggest	that	factor	1
represents	a	fear	of	statistics,	factor	2	represents	peer	evaluation	concerns,	factor	3	a	fear	of
computers	and	factor	4	a	fear	of	maths.

17.9.	Reliability	analysis	②

17.9.1.	Measures	of	reliability	③



If	you’re	using	 factor	 analysis	 to	validate	a	questionnaire,	 it	 is	useful	 to	check	 the	 reliability	of	your
scale.
	

SELF-TEST	Thinking	back	to	Chapter	1,	what	are	reliability	and	test–retest	reliability?

Reliability	 means	 that	 a	 measure	 (or	 in	 this	 case	 questionnaire)	 should	 consistently	 reflect	 the
construct	that	it	is	measuring.	One	way	to	think	of	this	is	that,	other	things	being	equal,	a	person	should
get	the	same	score	on	a	questionnaire	if	they	complete	it	at	two	different	points	in	time	(we	have	already
discovered	 that	 this	 is	 called	 test–retest	 reliability).	 So,	 someone	 who	 is	 terrified	 of	 SPSS	 and	 who
scores	highly	on	our	SAQ	should	score	similarly	highly	if	we	tested	them	a	month	later	(assuming	they
hadn’t	gone	into	some	kind	of	SPSS-anxiety	therapy	in	that	month).	Another	way	to	look	at	reliability	is
to	say	that	two	people	who	are	the	same	in	terms	of	the	construct	being	measured	should	get	the	same
score.	 So,	 if	we	 took	 two	 people	who	were	 equally	 SPSS-phobic,	 then	 they	 should	 get	more	 or	 less
identical	scores	on	 the	SAQ.	Likewise,	 if	we	 took	 two	people	who	 loved	SPSS,	 they	should	both	get
equally	 low	 scores.	 It	 should	 be	 apparent	 that	 the	 SAQ	 wouldn’t	 be	 an	 accurate	 measure	 of	 SPSS
anxiety	if	we	took	someone	who	loved	SPSS	and	someone	who	was	terrified	of	it	and	they	got	the	same
score!	In	statistical	terms,	the	usual	way	to	look	at	reliability	is	based	on	the	idea	that	individual	items
(or	 sets	 of	 items)	 should	 produce	 results	 consistent	 with	 the	 overall	 questionnaire.	 So,	 if	 we	 take
someone	scared	of	SPSS,	then	their	overall	score	on	the	SAQ	will	be	high;	if	the	SAQ	is	reliable	then	if
we	randomly	select	some	items	from	it	the	person’s	score	on	those	items	should	also	be	high.

TABLE	17.1	Summary	of	exploratory	factor	analysis	results	for	 the	SPSS	anxiety	questionnaire	(N	=
2571)



Note:	Factor	loadings	over	.40	appear	in	bold

LABCOAT	LENI’S	REAL	RESEARCH	17.1

Worldwide	addiction?	②
	

In	2007	it	was	estimated	that	around	179	million	people	worldwide	used	the	Internet.	From	the	increasing	popularity	(and	usefulness)
of	the	Internet	has	emerged	a	serious	and	recognized	problem	of	internet	addiction.	To	research	this	construct	it’s	helpful	to	be	able	to
measure	it,	so	Laura	Nichols	and	Richard	Nicki	developed	the	Internet	Addiction	Scale	(Nichols	&	Nicki,	2004).	Nichols	and	Nicki’s
36-item	 questionnaire	 contains	 items	 such	 as	 ‘I	 have	 stayed	 on	 the	 Internet	 longer	 than	 I	 intended	 to’	 and	 ‘My	 grades/work	 have
suffered	because	of	my	Internet	use’	to	which	responses	are	made	on	a	5-point	scale	(Never,	Rarely,	Sometimes,	Frequently,	Always).
(Incidentally,	while	researching	this	topic	I	encountered	an	Internet	addiction	recovery	website	that	offered	a	whole	host	of	resources
(e.g.,	questionnaires,	online	support	groups,	videos,	podcasts,	etc.)	that	would	keep	you	online	for	ages.	It	struck	me	that	this	was	like
having	a	heroin	addiction	recovery	centre	that	had	a	huge	pile	of	free	heroin	in	the	reception	area.)

The	data	from	207	people	in	this	study	are	in	the	file	Nichols	&	Nicki	(2004).sav.	The	authors	dropped	two	items	because	they	had



low	means	and	variances,	and	dropped	three	others	because	of	relatively	low	correlations	with	other	items.	They	performed	a	principal
component	analysis	on	the	remaining	31	items.	Labcoat	Leni	wants	you	to	run	some	descriptive	statistics	to	work	out	which	two	items
were	dropped	for	having	low	means/variances,	then	inspect	a	correlation	matrix	to	find	the	three	items	that	were	dropped	for	having
low	correlations.	Finally,	he	wants	you	to	run	a	principal	component	analysis	on	the	data.	Answers	are	in	the	additional	material	on	the
companion	website	(or	look	at	the	original	article).
	
NICHOLS,	L.	A.,	&	NICKI,	R.	(2004).	PSYCHOLOGY	OF	ADDICTIVE	BEHAVIORS	,	18	Ã	,	381–384.

The	simplest	way	to	do	this	in	practice	is	to	use	split-half	reliability.	This	method	splits	the	scale
set	into	two	randomly	selected	sets	of	items.	A	score	for	each	participant	is	calculated	on	each	half	of
the	scale.	If	a	scale	is	reliable	a	person’s	score	on	one	half	of	the	scale	should	be	the	same	(or	similar)	to
their	score	on	the	other	half.	Across	several	participants,	scores	from	the	two	halves	of	the	questionnaire
should	 correlate	 very	 highly.	The	 correlation	 between	 the	 two	 halves	 is	 the	 statistic	 computed	 in	 the
split-half	method,	with	 large	correlations	being	a	 sign	of	 reliability.	The	problem	with	 this	method	 is
that	there	are	several	ways	in	which	a	set	of	data	can	be	randomly	split	into	two	and	so	the	results	could
be	a	product	of	the	way	in	which	the	data	were	split.	To	overcome	this	problem,	Cronbach	(1951)	came
up	with	 a	measure	 that	 is	 loosely	 equivalent	 to	 creating	 two	 sets	of	 items	 in	 every	way	possible	 and
computing	 the	 correlation	 coefficient	 for	 each	 split.	 The	 average	 of	 these	 values	 is	 equivalent	 to
Cronbach’s	alpha,	α,	which	is	the	most	common	measure	of	scale	reliability:10

This	equation	may	look	complicated,	but	actually	isn’t.	For	each	item	on	our	scale	we	can	calculate
two	 things:	 the	variance	within	 the	 item,	and	 the	covariance	between	a	particular	 item	and	any	other
item	on	the	scale.	Put	another	way,	we	can	construct	a	variance–covariance	matrix	of	all	items.	In	this
matrix	the	diagonal	elements	will	be	the	variance	within	a	particular	item,	and	the	off-diagonal	elements
will	be	covariances	between	pairs	of	items.	The	top	half	of	the	equation	is	simply	the	number	of	items
(N)	 squared	 multiplied	 by	 the	 average	 covariance	 between	 items	 (the	 average	 of	 the	 off-diagonal
elements	in	the	aforementioned	variance–covariance	matrix).	The	bottom	half	is	the	sum	of	all	the	item
variances	and	item	covariances	(i.e.,	the	sum	of	everything	in	the	variance–covariance	matrix).

There	 is	 a	 standardized	 version	 of	 the	 coefficient	 too,	 which	 essentially	 uses	 the	 same	 equation
except	that	correlations	are	used	rather	than	covariances,	and	the	bottom	half	of	the	equation	uses	the
sum	of	the	elements	in	the	correlation	matrix	of	items	(including	the	1s	that	appear	on	the	diagonal	of
that	matrix).	The	normal	alpha	 is	appropriate	when	 items	on	a	 scale	are	 summed	 to	produce	a	 single
score	for	that	scale	(the	standardized	alpha	is	not	appropriate	in	these	cases).	The	standardized	alpha	is
useful,	though,	when	items	on	a	scale	are	standardized	before	being	summed.

17.9.2.	Interpreting	Cronbach’s	α	(some	cautionary	tales)	②

You’ll	often	see	in	books	or	journal	articles,	or	be	told	by	people,	that	a	value	of	.7	to	.8	is	an	acceptable
value	for	Cronbach’s	α;	values	substantially	lower	indicate	an	unreliable	scale.	Kline	(1999)	notes	that
although	the	generally	accepted	value	of	.8	is	appropriate	for	cognitive	tests	such	as	intelligence	tests,
for	 ability	 tests	 a	 cut-off	 point	 of	 .7	 is	 more	 suitable.	 He	 goes	 on	 to	 say	 that	 when	 dealing	 with
psychological	constructs,	values	below	even	.7	can,	realistically,	be	expected	because	of	the	diversity	of



the	constructs	being	measured.	Some	even	suggest	that	in	the	early	stages	of	research,	values	as	low	as
.5	will	suffice	(Nunnally,	1978).	However,	there	are	many	reasons	not	to	use	these	general	guidelines,
not	least	of	which	is	that	they	distract	you	from	thinking	about	what	the	value	means	within	the	context
of	the	research	you’re	doing	(Pedhazur	&	Schmelkin,	1991).

We’ll	now	look	at	some	issues	in	interpreting	alpha,	which	have	been	discussed	particularly	well	by
Cortina	 (1993)	 and	Pedhazur	 and	Schmelkin	 (1991).	 First,	 the	 value	 of	 α	 depends	 on	 the	 number	 of
items	on	 the	 scale.	You’ll	notice	 that	 the	 top	half	of	 the	equation	 for	α	 includes	 the	number	of	 items
squared.	Therefore,	as	the	number	of	items	on	the	scale	increases,	α	will	increase.	As	such,	it’s	possible
to	get	a	 large	value	of	α	because	you	have	a	 lot	of	 items	on	 the	 scale,	 and	not	because	your	 scale	 is
reliable.	For	example,	Cortina	(1993)	reports	data	from	two	scales,	both	of	which	have	α	=	.8.	The	first
scale	has	only	three	items,	and	the	average	correlation	between	items	was	a	respectable	.57;	however,
the	second	scale	had	10	items	with	an	average	correlation	between	these	items	of	a	less	respectable	.28.
Clearly	 the	 internal	 consistency	 of	 these	 scales	 differs,	 but	 according	 to	 Cronbach’s	 α	 they	 are	 both
equally	reliable.

Second,	 people	 tend	 to	 think	 that	 alpha	measures	 ‘unidimensionality’,	 or	 the	 extent	 to	which	 the
scale	measures	one	underlying	factor	or	construct.	This	is	true	when	there	is	one	factor	underlying	the
data	(see	Cortina,	1993),	but	Grayson	(2004)	demonstrates	that	data	sets	with	the	same	α	can	have	very
different	factor	structures.	He	showed	that	α	=.8	can	be	achieved	in	a	scale	with	one	underlying	factor,
with	 two	 moderately	 correlated	 factors	 and	 with	 two	 uncorrelated	 factors.	 Cortina	 (1993)	 has	 also
shown	 that	with	more	 than	12	 items,	and	 fairly	high	correlations	between	 items	(r	>	 .5),	α	can	 reach
values	around	and	above	.7	(.65	to	.84).	These	results	show	that	α	should	not	be	used	as	a	measure	of
‘uni-dimensionality’.	 Indeed,	Cronbach	(1951)	suggested	 that	 if	several	 factors	exist	 then	 the	formula
should	be	applied	separately	to	items	relating	to	different	factors.	In	other	words,	if	your	questionnaire
has	subscales,	α	should	be	applied	separately	to	these	subscales.

The	final	warning	is	about	items	that	have	a	reverse	phrasing.	For	example,	in	the	SAQ	there	is	one
item	(question	3)	that	was	phrased	the	opposite	way	around	to	all	other	items.	The	item	was	‘standard
deviations	excite	me’.	Compare	this	to	any	other	item	and	you’ll	see	it	requires	the	opposite	response.
For	example,	 item	1	 is	 ‘statistics	make	me	cry’.	 If	you	don’t	 like	statistics	 then	you’ll	 strongly	agree
with	 this	 statement	 and	 so	will	 get	 a	 score	 of	 5	 on	 our	 scale.	 For	 item	 3,	 if	 you	 hate	 statistics	 then
standard	deviations	are	unlikely	 to	excite	you	so	you’ll	 strongly	disagree	and	get	a	 score	of	1	on	 the
scale.	These	 reverse-phrased	 items	are	 important	 for	 reducing	 response	bias;	participants	will	need	 to
pay	attention	to	the	questions.	For	factor	analysis,	this	reverse	phrasing	doesn’t	matter;	all	that	happens
is	you	get	a	negative	factor	loading	for	any	reversed	items	(in	fact,	you’ll	see	that	item	3	has	a	negative
factor	loading	in	Output	17.9).	However,	these	reverse-scored	items	will	affect	alpha.	To	see	why,	think
about	the	equation	for	Cronbach’s	α.	The	top	half	incorporates	the	average	covariance	between	items.	If
an	 item	 is	 reverse-phrased	 then	 it	 will	 have	 a	 negative	 relationship	 with	 other	 items,	 hence	 the
covariances	between	this	item	and	other	items	will	be	negative.	The	average	covariance	is	the	sum	of
covariances	 divided	 by	 the	 number	 of	 covariances,	 and	 by	 including	 a	 bunch	 of	 negative	 values	we
reduce	 the	 sum	of	 covariances,	 and	 hence	we	 also	 reduce	Cronbach’s	 α,	 because	 the	 top	 half	 of	 the



equation	gets	 smaller.	 In	 extreme	cases,	 it	 is	 even	possible	 to	get	 a	negative	value	 for	Cronbach’s	α,
simply	because	the	magnitude	of	negative	covariances	is	bigger	than	the	magnitude	of	positive	ones.	A
negative	Cronbach’s	α	doesn’t	make	much	sense,	but	it	does	happen,	and	if	it	does,	ask	yourself	whether
you	included	any	reverse-phrased	items.

If	you	have	 reverse-phrased	 items	 then	you	also	have	 to	 reverse	 the	way	 in	which	 they’re	 scored
before	 you	 conduct	 reliability	 analysis.	 This	 is	 quite	 easy.	 To	 take	 our	 SAQ	data,	we	 have	 one	 item
which	is	currently	scored	as	1	=	strongly	disagree,	2	=	disagree,	3	=	neither,	4	=	agree	and	5	=	strongly
agree.	This	 is	 fine	 for	 items	phrased	 in	such	a	way	 that	agreement	 indicates	statistics	anxiety,	but	 for
item	 3	 (standard	 deviations	 excite	 me),	 disagreement	 indicates	 statistics	 anxiety.	 To	 reflect	 this
numerically,	 we	 need	 to	 reverse	 the	 scale	 such	 that	 1	 =	 strongly	 agree,	 2	 =	 agree,	 3	 =	 neither,	 4	 =
disagree	 and	5	=	 strongly	 disagree.	 In	 doing	 so,	 an	 anxious	 person	 still	 gets	 5	 on	 this	 item	 (because
they’d	strongly	disagree	with	it).

To	reverse	the	scoring	find	the	maximum	value	of	your	response	scale	(in	this	case	5)	and	add	1	to	it
(so	you	get	6	in	this	case).	Then	for	each	person,	you	take	this	value	and	subtract	from	it	the	score	they
actually	got.	Therefore,	someone	who	scored	5	originally	now	scores	6−5	=	1,	and	someone	who	scored
1	originally	now	gets	6−1	=	5.	Someone	in	the	middle	of	the	scale	with	a	score	of	3	will	still	get	6−3	=
3.	Obviously	it	would	take	a	long	time	to	do	this	for	each	person,	but	we	can	get	SPSS	to	do	it	for	us.
	

SELF-TEST	Using	what	you	learnt	in	Chapter	5,	use	the	compute	compute	command	to
reverse-score	item	3.	(Clue:	Remember	that	you	are	simply	changing	the	variable	to	6	minus
its	original	value.)

17.9.3.	Reliability	analysis	in	SPSS	②

Let’s	test	the	reliability	of	the	SAQ	using	the	data	in	SAQ.sav.	You	should	have	reverse-scored	item	3
(see	 above),	 but	 if	 you	 can’t	 be	 bothered	 then	 load	 the	 file	 SAQ	 (Item	 3	Reversed).sav	 instead.
Remember	also	 that	I	said	we	should	conduct	reliability	analysis	on	any	subscales	 individually.	If	we
use	the	results	from	our	oblique	rotation	(Output	17.9),	then	we	have	four	subscales:

FIGURE	17.15	Main	dialog	box	for	reliability	analysis.



① Subscale	1	(Fear	of	statistics):	items	1,	3,	4,	5,	12,	16,	20,	21
② Subscale	2	(Peer	evaluation):	items	2,	9,	19,	22,	23
③ Subscale	3	(Fear	of	computers):	items	6,	7,	10,	13,	14,	15,	18
④ Subscale	4	(Fear	of	mathematics):	items	8,	11,	17

To	 conduct	 each	 reliability	 analysis	 on	 these	 data	 you	 need	 to	 select	
	to	display	the	dialog	box	in	Figure	17.15.	Select	any	items	from	the

list	that	you	want	to	analyse	(to	begin	with,	let’s	do	the	items	from	the	fear	of	statistics	subscale:	items
1,	3,	4,	5,	12,	16,	20	and	21)	on	the	left-hand	side	of	the	dialog	box	and	drag	them	to	the	box	labelled
Items	(or	click	on	 ).	Remember	that	you	can	select	several	items	at	the	same	time	if	you	hold	down
the	Ctrl	(Cmd	on	a	Mac)	key	while	you	select	the	variables.

There	are	several	reliability	analyses	you	can	run,	but	the	default	option	is	Cronbach’s	α.	You	can
change	the	method	(e.g.,	to	the	split-half	method)	by	clicking	on	 	to	reveal	a	drop-down	list	of
possibilities,	but	the	default	method	is	a	good	one	to	select.	Also,	it’s	a	good	idea	to	type	the	name	of
the	scale	(in	this	case	‘Fear	of	Statistics’)	into	the	box	labelled	Scale	label	because	this	will	add	a	header
to	 the	SPSS	output	with	whatever	you	 type	 in	 this	 box:	 typing	 a	 sensible	name	here	will	make	your
output	easier	to	follow.

If	you	click	on	 	you	can	access	the	dialog	box	in	Figure	17.16.	In	the	statistics	dialog	box
you	can	select	several	 things,	but	 the	one	most	 important	for	questionnaire	reliability	 is:	Scale	 if	 item
deleted.	This	option	tells	us	what	the	value	of	α	would	be	if	each	item	were	deleted.	If	our	questionnaire
is	reliable	then	we	would	not	expect	any	one	item	to	greatly	affect	the	overall	reliability.	In	other	words,
no	item	should	cause	a	substantial	decrease	in	α.	If	it	does	then	you	should	consider	dropping	that	item
from	the	questionnaire	to	improve	reliability.

FIGURE	17.16
Statistics	for	reliability	analysis

The	inter-item	correlations	and	covariances	(and	summaries)	provide	us	with	correlation	coefficients
and	averages	for	items	on	our	scale.	We	should	already	have	these	values	from	our	factor	analysis,	so
there	is	little	point	in	selecting	these	options.	Options	like	the	F	test,	Friedman	chi-square	(if	your	data



are	ranked),	Cochran	chi-square	(if	your	data	are	dichotomous),	and	Hotelling’s	T-square	use	these	tests
to	compare	the	central	tendency	of	different	items	on	the	questionnaire.	These	tests	might	be	useful	to
check	that	items	have	similar	distributional	properties	(i.e.,	the	same	average	value),	but	given	the	large
sample	sizes	you	ought	to	be	using	for	factor	analysis,	 they	will	 inevitably	produce	significant	results
even	when	only	small	differences	exist	between	the	questionnaire	items.

You	can	also	request	an	intraclass	correlation	coefficient	(ICC).	The	correlation	coefficients	that
we	 encountered	 earlier	 in	 this	 book	 measure	 the	 relation	 between	 variables	 that	 measure	 different
things.	For	example,	the	correlation	between	listening	to	Deathspell	Omega	and	Satanism	involves	two
classes	of	measures:	the	type	of	music	a	person	likes	and	their	religious	beliefs.	Intraclass	correlations
measure	the	relationship	between	two	variables	that	measure	the	same	thing	(i.e.,	variables	within	the
same	class).	Two	common	uses	are	in	comparing	paired	data	(such	as	twins)	on	the	same	measure,	and
assessing	the	consistency	between	judges’	ratings	of	a	set	of	objects	(hence	the	reason	why	it	is	found	in
the	reliability	statistics	in	SPSS).	If	you’d	like	to	know	more,	see	Section	20.2.1.

Use	the	simple	set	of	options	in	Figure	17.16	to	run	a	basic	reliability	analysis.	Click	on	 	to
return	to	the	main	dialog	box	and	then	click	on	 	to	run	the	analysis.

17.9.4.	Reliability	analysis	output	②

Output	17.13	shows	 the	results	of	 this	basic	 reliability	analysis	 for	 the	fear	of	statistics	subscale.	The
value	 of	Cronbach’s	 α	 is	 presented	 in	 a	 small	 table	 and	 indicates	 the	 overall	 reliability	 of	 the	 scale.
Bearing	in	mind	what	we’ve	already	noted	about	effects	from	the	number	of	items,	and	how	daft	it	is	to
apply	general	rules,	we’re	looking	for	values	in	the	region	of	about	.7	to	.8.	In	this	case	α	is	.821,	which
is	certainly	in	the	region	indicated	by	Kline	(1999),	and	probably	indicates	good	reliability.

OUTPUT	17.13

In	the	table	labelled	Item-Total	Statistics	the	column	labelled	Corrected	Item-Total	Correlation	has
the	 correlations	 between	 each	 item	 and	 the	 total	 score	 from	 the	 questionnaire.	 In	 a	 reliable	 scale	 all
items	should	correlate	with	 the	 total.	So,	we’re	 looking	for	 items	 that	don’t	correlate	with	 the	overall
score	from	the	scale:	if	any	of	these	values	are	less	than	about	.3	then	we’ve	got	problems,	because	it
means	 that	 a	 particular	 item	 does	 not	 correlate	 very	 well	 with	 the	 scale	 overall.	 Items	 with	 low
correlations	may	 have	 to	 be	 dropped.	 For	 these	 data,	 all	 data	 have	 item–total	 correlations	 above	 .3,
which	is	encouraging.

The	values	in	the	column	labelled	Cronbach’s	Alpha	if	Item	Deleted	are	the	values	of	the	overall	α	if



that	item	isn’t	included	in	the	calculation.	As	such,	they	reflect	the	change	in	Cronbach’s	α	that	would
be	seen	if	a	particular	item	were	deleted.	The	overall	α	is	.821,	and	so	all	values	in	this	column	should
be	around	that	same	value.	We’re	actually	looking	for	values	of	alpha	greater	than	the	overall	α.	If	you
think	about	it,	if	the	deletion	of	an	item	increases	Cronbach’s	α	then	this	means	that	the	deletion	of	that
item	 improves	 reliability.	 Therefore,	 any	 items	 that	 have	 values	 of	 α	 in	 this	 column	 greater	 than	 the
overall	α	may	need	to	be	deleted	from	the	scale	to	improve	its	reliability.	None	of	the	items	here	would
increase	alpha	if	 they	were	deleted,	which	is	good	news.	It’s	worth	noting	that	 if	 items	do	need	to	be
removed	at	this	stage	then	you	should	rerun	your	factor	analysis	as	well	to	make	sure	that	the	deletion	of
the	item	has	not	affected	the	factor	structure
	

SELF-TEST	Run	reliability	analyses	on	the	other	three	subscales.

Just	to	illustrate	the	importance	of	reverse-scoring	items	before	running	reliability	analysis,	Output
17.14	shows	the	reliability	analysis	for	the	fear	of	statistics	subscale	but	done	on	the	original	data	(i.e.,
without	 item	3	being	 reverse-scored).	Note	 that	 the	 overall	 α	 is	 considerably	 lower	 (.605	 rather	 than
.821).	Also,	note	that	this	item	has	a	negative	item–total	correlation	(which	is	a	good	way	to	spot	if	you
have	a	potential	reverse-scored	item	in	the	data	that	hasn’t	been	reverse-scored).	Finally,	note	that	for
item	3,	the	α	if	item	deleted	is	.8.	That	is,	if	this	item	were	deleted	then	the	reliability	would	improve
from	 about	 .6	 to	 about	 .8.	 This,	 I	 hope,	 illustrates	 that	 failing	 to	 reverse-score	 items	 that	 have	 been
phrased	oppositely	to	other	items	on	the	scale	will	mess	up	your	reliability	analysis.

OUTPUT	17.14

Let’s	now	look	at	our	subscale	of	peer	evaluation.	For	our	subscale	of	peer	evaluation	you	should
get	the	output	in	Output	17.15.	The	overall	reliability	is	 .57,	which	is	nothing	to	bake	a	cake	for.	The
overall	α	is	quite	low,	and	although	this	is	 in	keeping	with	what	Kline	says	we	should	expect	for	this
kind	of	social	science	data,	it	is	well	below	the	statistics	subscale	and	(as	we	shall	see)	the	other	two.
The	scale	has	five	items,	compared	to	seven,	eight	and	three	on	the	other	scales,	so	its	reliability	relative
to	 the	other	scales	 is	not	going	to	be	dramatically	affected	by	 the	number	of	 items.	The	values	 in	 the
column	 labelled	Corrected	 Item-Total	 Correlation	 are	 all	 around	 .3,	 and	 smaller	 for	 item	 23.	 These



results	again	indicate	questionable	internal	consistency	and	identify	item	23	as	a	potential	problem.	The
values	 in	 the	 column	 labelled	Cronbach’s	Alpha	 if	 Item	Deleted	 indicate	 that	 none	 of	 the	 items	 here
would	 increase	 the	 reliability	 if	 they	were	deleted	because	all	values	 in	 this	column	are	 less	 than	 the
overall	reliability	of	.57.	The	items	on	this	subscale	cover	quite	diverse	themes	of	peer	evaluation,	and
this	might	explain	the	relative	lack	of	consistency;	we	probably	need	to	rethink	this	subscale.

Moving	on	 to	 the	 fear	of	computers	 subscale,	Output	17.16	 shows	an	overall	α	of	 .823,	which	 is
pretty	good.	The	values	in	the	column	labelled	Corrected	Item-Total	Correlation	are	again	all	above	.3,
which	is	also	good.	The	values	in	the	column	labelled	Cronbach’s	Alpha	if	Item	Deleted	show	that	none
of	 the	 items	 would	 increase	 the	 reliability	 if	 they	 were	 deleted.	 This	 indicates	 that	 all	 items	 are
positively	contributing	to	the	overall	reliability.

OUTPUT	17.15

OUTPUT	17.16

Finally,	 for	 the	 fear	 of	maths	 subscale,	Output	 17.17	 shows	 an	 overall	 reliability	 of	 .819,	 which
indicates	good	 reliability.	The	values	 in	 the	 column	 labelled	Corrected	 Item-Total	Correlation	 are	 all
above	 .3,	 which	 is	 good,	 and	 the	 values	 in	 the	 column	 labelled	 Cronbach’s	 Alpha	 if	 Item	 Deleted
indicate	that	none	of	the	items	here	would	increase	the	reliability	if	they	were	deleted	because	all	values
in	this	column	are	less	than	the	overall	reliability	value.



OUTPUT	17.17

CRAMMING	SAM’S	TIPS 	Reliability
Reliability	analysis	is	used	to	measure	the	consistency	of	a	measure.
Remember	to	reverse-score	any	items	that	were	reverse-phrased	on	the	original	questionnaire	before	you	run	the	analysis.
Run	separate	reliability	analyses	for	all	subscales	of	your	questionnaire.
Cronbach’s	α	indicates	the	overall	reliability	of	a	questionnaire,	and	values	around	.8	are	good	(or	.7	for	ability	tests	and	the
like).
The	Cronbach’s	Alpha	if	Item	Deleted	column	tells	you	whether	removing	an	item	will	improve	the	overall	reliability.	Values
greater	than	the	overall	reliability	indicate	that	removing	that	item	will	improve	the	overall	reliability	of	the	scale.	Look	for	items
that	dramatically	increase	the	value	of	α	and	remove	them.
If	you	remove	items,	rerun	your	factor	analysis	to	check	that	the	factor	structure	still	holds.

17.10.	How	to	report	reliability	analysis	②

You	can	report	the	reliabilities	in	the	text	using	the	symbol	α	and	remembering	that	because	Cronbach’s
α	can’t	be	larger	than	1	we	drop	the	zero	before	the	decimal	place	(if	we	are	following	APA	practice):

The	fear	of	computers,	fear	of	statistics	and	fear	of	maths	subscales	of	the	SAQ	all	had	high
reliabilities,	all	Cronbach’s	α	=	.82.	However,	the	fear	of	negative	peer	evaluation	subscale	had
relatively	low	reliability,	Cronbach’s	α	=	.57.

However,	 the	most	 common	way	 to	 report	 reliability	 analysis	when	 it	 follows	 a	 factor	 analysis	 is	 to
report	 the	 values	 of	Cronbach’s	α	 as	 part	 of	 the	 table	 of	 factor	 loadings.	For	 example,	 in	Table	17.1
notice	that	in	the	last	row	of	the	table	I	quoted	the	value	of	Cronbach’s	α	for	each	subscale	in	turn.

17.11.	Brian’s	attempt	to	woo	Jane	①



FIGURE	17.17
What	Brian	learnt	from	this	chapter

17.12.	What	next?	②

At	the	age	of	23	I	took	it	upon	myself	to	become	a	living	homage	to	the	digestive	system.	I	furiously
devoured	 articles	 and	 books	 on	 statistics	 (some	of	 them	 I	 even	 understood),	 I	mentally	 chewed	over
them,	I	broke	them	down	with	the	stomach	acid	of	my	intellect,	I	stripped	them	of	their	goodness	and
nutrients,	 I	 compacted	 them	down,	 and	 after	 about	 two	years	 I	 forced	 the	 smelly	brown	 remnants	of
those	intellectual	meals	out	of	me	in	the	form	of	a	book.	I	was	mentally	exhausted	at	the	end	of	it.	‘It’s	a
good	job	I’ll	never	have	to	do	that	again’,	I	thought.

17.13.	Key	terms	that	I’ve	discovered

Alpha	factoring
Anderson–Rubin	method
Common	factor
Common	variance
Communality
Component	matrix
Confirmatory	factor	analysis



Cronbach’s	α
Direct	oblimin
Extraction
Equamax
Factor	analysis
Factor	loading
Factor	matrix
Factor	scores
Factor	transformation	matrix,	Λ
Intraclass	correlation	coefficient	(ICC)
Kaiser’s	criterion
Latent	variable
Kaiser–Meyer–Olkin	(KMO)	measure	of	sampling	adequacy
Oblique	rotation
Orthogonal	rotation
Pattern	matrix
Principal	component	analysis	(PCA)
Promax
Quartimax
Random	variance
Rotation
Scree	plot
Singularity
Split-half	reliability
Structure	matrix
Unique	factor
Unique	variance
Varimax

17.14.	Smart	Alex’s	tasks

Task	1:	Rerun	the	analysis	in	this	chapter	using	principal	component	analysis	and	compare	the
results	to	those	in	the	chapter.	(Set	the	iterations	to	convergence	to	30.)	②
Task	2:	The	University	of	Sussex	constantly	seeks	to	employ	the	best	people	possible	as	lecturers.
They	wanted	to	revise	the	‘Teaching	of	Statistics	for	Scientific	Experiments’	(TOSSE)
questionnaire,	which	is	based	on	Bland’s	theory	that	says	that	good	research	methods	lecturers
should	have:	(1)	a	profound	love	of	statistics;	(2)	an	enthusiasm	for	experimental	design;	(3)	a	love
of	teaching;	and	(4)	a	complete	absence	of	normal	interpersonal	skills.	These	characteristics	should
be	related	(i.e.,	correlated).	The	University	revised	this	questionnaire	to	become	the	‘Teaching	of
Statistics	for	Scientific	Experiments	–	Revised’	(TOSSE-R).	They	gave	this	questionnaire	to	239



research	methods	lecturers	around	the	world	to	see	if	it	supported	Bland’s	theory.	The
questionnaire	is	in	Figure	17.18,	and	the	data	are	in	TOSSE-R.sav.	Conduct	a	factor	analysis	(with
appropriate	rotation)	and	interpret	the	factor	structure.	②
Task	3:	Dr	Sian	Williams	(University	of	Brighton)	devised	a	questionnaire	to	measure
organizational	ability.	She	predicted	five	factors	to	do	with	organizational	ability:	(1)	preference
for	organization;	(2)	goal	achievement;	(3)	planning	approach;	(4)	acceptance	of	delays;	and	(5)
preference	for	routine.	These	dimensions	are	theoretically	independent.	Williams’	questionnaire
contains	28	items	using	a	7-point	Likert	scale	(1	=	strongly	disagree,	4	=	neither,	7	=	strongly
agree).	She	gave	it	to	239	people.	Run	a	principal	component	analysis	on	the	data	in	Williams.sav.
②
Task	4:	Zibarras,	Port,	and	Woods	(2008)	looked	at	the	relationship	between	personality	and
creativity.	They	used	the	Hogan	Development	Survey	(HDS),	which	measures	11	dysfunctional
dispositions	of	employed	adults:	being	volatile,	mistrustful,	cautious,	detached,	passive-
aggressive,	arrogant,	manipulative,	dramatic,	eccentric,	perfectionist,	and	dependent.	Zibarras
et	al.	wanted	to	reduce	these	11	traits	and,	based	on	parallel	analysis,	found	that	they	could	be
reduced	to	three	components.	They	ran	a	principal	component	analysis	with	varimax	rotation.
Repeat	this	analysis	(Zibarras	et	al.	(2008).sav)	to	see	which	personality	dimensions	clustered
together	(see	page	210	of	the	original	paper).	②

Answers	can	be	found	on	the	companion	website.



FIGURE	17.18
The	TOSSE-R	questionnaire

17.15.	Further	reading
Cortina,	J.	M.	(1993).	What	is	coefficient	alpha?	An	examination	of	theory	and	applications.	Journal	of	Applied	Psychology,	78,	98–104.	(A

very	readable	paper	on	Cronbach’s	α.)
Dunteman,	G.	E.	(1989).	Principal	components	analysis.	Sage	University	Paper	Series	on	Quantitative	Applications	in	the	Social	Sciences,	07-

069.	Newbury	Park,	CA:	Sage.	(This	monograph	is	quite	high	level	but	comprehensive.)
Pedhazur,	E.,	&	Schmelkin,	L.	(1991).	Measurement,	design	and	analysis.	Hillsdale,	NJ:	Erlbaum.	(Chapter	22	is	an	excellent	introduction	to

the	theory	of	factor	analysis.)
Tabachnick,	B.	G.,	&	Fidell,	L.	S.	(2012).	Using	multivariate	statistics	(6th	ed.).	Boston:	Allyn	&	Bacon.

	

1	She	didn’t	say	‘rabbit’,	but	she	did	say	a	word	that	describes	what	rabbits	do	a	lot;	it	begins	with	an	‘f’	and	the	publishers	think	that	it
will	offend	you.
2	PCA	is	not	the	same	as	factor	analysis.	This	doesn’t	stop	idiots	like	me	from	discussing	them	as	though	they	are.	I	tend	to	focus	on	the
similarities	between	 the	 techniques,	which	will	 reduce	 some	 statisticians	 (and	psychologists)	 to	 tears.	 I’m	banking	on	 these	people	not
needing	to	read	this	book,	so	I’ll	take	my	chances	because	I	think	it’s	easier	for	you	if	I	give	you	a	general	sense	of	what	the	procedures	do
and	not	obsess	too	much	about	their	differences.	Once	you	have	got	the	basics	under	your	belt,	feel	free	to	obsess	about	their	differences
and	complain	to	all	of	your	friends	about	how	awful	the	book	by	that	imbecile	Field	is	…
3	 This	matrix	 is	 called	 an	R-matrix,	 or	R,	 because	 it	 contains	 correlation	 coefficients	 and	 r	 usually	 denotes	 Pearson’s	 correlation	 (see
Chapter	7)	–	the	r	turns	into	a	capital	letter	when	it	denotes	a	matrix.
4	In	his	original	paper	Cattell	advised	including	the	factor	at	the	point	of	inflexion	as	well,	because	it	represents	an	error	factor,	or	‘garbage
can’	as	he	put	it.	However,	Thurstone	argued	that	it	is	better	to	retain	too	few	than	too	many	factors,	and	in	practice	the	‘garbage	can’	factor
is	rarely	retained.
5	This	term	means	that	the	axes	are	at	right	angles	to	one	another.
6	To	save	space	only	columns	for	the	first	five	and	last	five	questions	in	the	questionnaire	are	included.
7	Actually	the	determinant	of	this	matrix	is	0.0005271;	I	have	no	idea	why	SPSS	reports	this	value	as	.001.
8	SPSS	has	a	weird	rounding	habit	here.	There	are	253	unique	correlation	coefficients	in	the	table	and	12	residuals	greater	than	.05,	which
is	(12/253)	×	100	=	4.74%.	SPSS	seems	to	round	down	to	the	nearest	whole	percentage	value	for	some	reason.
9	The	suppression	of	loadings	less	than	.3	and	ordering	variables	by	their	loading	size	makes	this	pattern	really	easy	to	see.
10	Although	this	is	the	easiest	way	to	conceptualize	Cronbach’s,	α,	whether	or	not	it	is	exactly	equal	to	the	average	of	all	possible	split-half
reliabilities	 depends	 on	 exactly	 how	 you	 calculate	 the	 split-half	 reliability	 (see	 the	 glossary	 for	 computational	 details).	 If	 you	 use	 the
Spearman–Brown	 formula,	which	 takes	no	account	of	 item	standard	deviations,	 then	Cronbach’s	will	be	equal	 to	 the	average	 split-half
reliability	only	when	the	item	standard	deviations	are	equal;	otherwise	α	will	be	smaller	than	the	average.	However,	if	you	use	a	formula
for	split-half	reliability	that	does	account	for	item	standard	deviations	(such	as	Flanagan,	1937;	Rulon,	1939)	then	α	will	always	equal	the
average	split-half	reliability	(see	Cortina,	1993).


	17 Exploratory factor analysis
	17.1. What will this chapter tell me?
	17.2. When to use factor analysis
	17.3. Factors and components
	17.3.1. Graphical representation
	17.3.2. Mathematical representation
	17.3.3. Factor scores

	17.4. Discovering factors
	17.4.1. Choosing a method
	17.4.2. Communality
	17.4.3. Factor analysis or PCA?
	17.4.4. Theory behind PCA
	17.4.5. Factor extraction: eigenvalues and the scree plot
	17.4.6. Improving interpretation: factor rotation

	17.5. Research example
	17.5.1. General procedure
	17.5.2. Before you begin

	17.6. Running the analysis
	17.6.1. Factor extraction in SPSS
	17.6.2. Rotation
	17.6.3. Scores
	17.6.4. Options

	17.7. Interpreting output from SPSS
	17.7.1. Preliminary analysis
	17.7.2. Factor extraction
	17.7.3. Factor rotation
	17.7.4. Factor scores
	17.7.5. Summary

	17.8. How to report factor analysis
	17.9. Reliability analysis
	17.9.1. Measures of reliability
	17.9.2. Interpreting Cronbach’s a (some cautionary tales)
	17.9.3. Reliability analysis in SPSS
	17.9.4. Reliability analysis output

	17.10. How to report reliability analysis
	17.11. Brian’s attempt to woo Jane
	17.12. What next?
	17.13. Key terms that I’ve discovered
	17.14. Smart Alex’s tasks
	17.15. Further reading


