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FIGURE	8.1
Me	playing	with	my	ding-a-ling	in	the	Holimarine	Talent	Show.	Note	the	groupies	queuing	up	at	the
front

8.1.	What	will	this	chapter	tell	me?	①

Although	none	of	us	can	know	the	future,	predicting	it	is	so	important	that	organisms	are	hard	wired	to
learn	about	predictable	events	 in	 their	environment.	We	saw	 in	 the	previous	chapter	 that	 I	 received	a
guitar	for	Christmas	when	I	was	8.	My	first	foray	into	public	performance	was	a	weekly	talent	show	at	a
holiday	camp	called	 ‘Holimarine’	 in	Wales	 (it	 doesn’t	 exist	 any	more	because	 I	 am	old	and	 this	was
1981).	 I	sang	a	Chuck	Berry	song	called	‘My	ding-a-ling’1	and	 to	my	absolute	amazement	 I	won	 the
competition.2	Suddenly	other	8-year-olds	across	the	land	(well,	a	ballroom	in	Wales)	worshipped	me	(I
made	lots	of	friends	after	the	competition).	I	had	tasted	success,	it	tasted	like	praline	chocolate,	and	so	I
wanted	to	enter	the	competition	in	the	second	week	of	our	holiday.	To	ensure	success,	I	needed	to	know
why	I	had	won	in	the	first	week.	One	way	to	do	this	would	have	been	to	collect	data	and	to	use	these
data	to	predict	people’s	evaluations	of	children’s	performances	in	the	contest	from	certain	variables:	the
age	of	 the	performer,	what	 type	of	performance	 they	gave	 (singing,	 telling	a	 joke,	magic	 tricks),	 and
perhaps	how	cute	they	looked.	A	regression	analysis	on	these	data	would	enable	us	to	predict	the	future
(success	in	next	week’s	competition)	based	on	values	of	the	predictor	variables.	If,	for	example,	singing
was	an	 important	 factor	 in	getting	a	good	audience	evaluation,	 then	 I	 could	 sing	again	 the	 following
week;	however,	if	jokers	tended	to	do	better	then	I	could	switch	to	a	comedy	routine.	When	I	was	8	I
wasn’t	the	sad	geek	that	I	am	today,	so	I	didn’t	know	about	regression	analysis	(nor	did	I	wish	to	know);
however,	my	dad	thought	that	success	was	due	to	the	winning	combination	of	a	cherub-looking	8-year-



old	 singing	 songs	 that	 can	 be	 interpreted	 in	 a	 filthy	way.	He	wrote	 a	 song	 for	me	 to	 sing	 about	 the
keyboard	player	in	the	Holimarine	Band	‘messing	about	with	his	organ’.	He	said	‘take	this	song,	son,
and	steal	the	show’	…	and	that’s	what	I	did:	I	came	first	again.	There’s	no	accounting	for	taste.

ODITI’S	LANTERN

Words	that	go	unspoken,	deeds	that	go	undone

‘I,	Oditi,	do	not	want	my	followers	to	get	distracted	by	playing	with	their	ding-a-lings.	To	warn	you	all	of	the	dangers	of	such	frivolity,
I	have	uncovered	a	song,	sung	by	an	innocent	child,	that	explains	the	risks.	Stare	into	my	lantern	and	shake	your	booty	to	the	funky
tune.’

8.2.	An	introduction	to	regression	①

8.2.1.	The	simple	linear	model	①

In	the	previous	chapter	we	started	getting	down	to	the	nitty-gritty	of	the	linear	model	that	we’ve	been
discussing	since	way	back	in	Chapter	2.	We	saw	that	if	we	wanted	to	look	at	the	relationship	between
two	variables	we	could	use	the	model	in	equation	(2.3):

outcomei	=	(bXi)	+	errori

In	this	model,	b	is	the	correlation	coefficient	(more	often	denoted	as	r)	and	it	is	a	standardized	measure.
However,	 we	 can	 also	 work	 with	 an	 unstandardized	 version	 of	 b,	 but	 in	 doing	 so	 we	 need	 to	 add
something	to	the	model:

The	 important	 thing	 to	 note	 is	 that	 this	 equation	 keeps	 the	 fundamental	 idea	 that	 an	 outcome	 for	 a
person	 can	 be	 predicted	 from	 a	 model	 (the	 stuff	 in	 brackets)	 and	 some	 error	 associated	 with	 that
prediction	 (εi).	We	 are	 still	 predicting	 an	 outcome	 variable	 (yi)	 from	 a	 predictor	 variable	 (Xi)	 and	 a
parameter,	b1,	 associated	 with	 the	 predictor	 variable	 that	 quantifies	 the	 relationship	 it	 has	 with	 the
outcome	variable.	This	model	differs	 from	that	of	a	correlation	only	 in	 that	 it	uses	an	unstandardized
measure	of	the	relationship	(b)	and	consequently	we	need	to	include	a	parameter	that	tells	us	the	value



of	the	outcome	when	the	predictor	is	zero.3	This	parameter	is	b0.
Focus	on	the	model	itself	for	a	minute.	Does	it	seem	familiar?	Let’s	imagine	that	instead	of	b0	we

use	the	letter	c,	and	instead	of	b1	we	use	the	letter	m.	Let’s	also	ignore	the	error	term	for	the	moment.
We	could	predict	our	outcome	as	follows:

outcomei	=	mx	+	c

Or	if	you’re	American,	Canadian	or	Australian	let’s	use	the	letter	b	instead	of	c:

outcomei	=	mx	+	b

Perhaps	you’re	French,	Dutch	or	Brazilian,	in	which	case	let’s	use	a	instead	of	m:

outcomei	=	ax	+	b

Do	 any	 of	 these	 look	 familiar	 to	 you?	 If	 not,	 there	 are	 two	 explanations:	 (1)	 you	 didn’t	 pay	 enough
attention	at	school,	or	(2)	you’re	Latvian,	Greek,	Italian,	Swedish,	Romanian,	Finnish	or	Russian	–	to
avoid	this	section	being	even	more	tedious,	I	used	only	the	three	main	international	differences	in	the
equation	above.	The	different	forms	of	the	equation	make	an	important	point:	the	symbols	or	letters	we
use	 in	an	equation	don’t	necessarily	change	 it.4	Whether	we	write	mx	+	c	 or	b1X	 +	b0	 doesn’t	 really
matter,	what	matters	is	what	the	symbols	represent.	So,	what	do	the	symbols	represent?

Hopefully,	 some	 of	 you	 recognized	 this	model	 as	 ‘the	 equation	 of	 a	 straight	 line’.	 I	 have	 talked
throughout	this	book	about	fitting	‘linear	models’,	and	linear	simply	means	‘straight	line’.	So,	it	should
come	as	no	surprise	that	the	equation	we	use	is	the	one	that	describes	a	straight	line.	Any	straight	line
can	be	defined	by	two	things:	(1)	the	slope	(or	gradient)	of	the	line	(usually	denoted	by	b1);	and	(2)	the
point	 at	which	 the	 line	crosses	 the	vertical	 axis	of	 the	graph	 (known	as	 the	 intercept	of	 the	 line,	b0).
These	parameters	b1	and	b0	are	known	as	 the	regression	coefficients	and	will	crop	up	 time	and	 time
again	 in	 this	book,	where	you	may	see	 them	referred	 to	generally	as	b	 (without	 any	 subscript)	 or	bn
(meaning	the	b	associated	with	variable	n).	A	particular	line	(i.e.,	model)	will	have	a	specific	intercept
and	gradient.

Figure	8.2	shows	a	set	of	lines	that	have	the	same	intercept	but	different	gradients.	For	these	three
models,	b0	will	be	the	same	in	each	but	the	values	of	b1	will	differ	in	each	model.

Figure	 8.2	 also	 shows	 models	 that	 have	 the	 same	 gradients	 (b1	 is	 the	 same	 in	 each	 model)	 but
different	 intercepts	 (the	b0	 is	 different	 in	 each	model).	 I’ve	mentioned	 already	 that	 b1	 quantifies	 the
relationship	 between	 the	 predictor	 variable	 and	 the	 outcome,	 and	 Figure	 8.2	 illustrates	 this	 point.	 In
Chapter	6	we	saw	how	relationships	can	be	either	positive	or	negative	(and	I	don’t	mean	whether	or	not
you	and	your	partner	argue	all	 the	time).	A	model	with	a	positive	b1	describes	a	positive	relationship,
whereas	a	line	with	a	negative	b1	describes	a	negative	relationship.	Looking	at	Figure	8.2	(left),	the	red
line	describes	a	positive	relationship	whereas	the	green	line	describes	a	negative	relationship.	As	such,
we	can	use	a	linear	model	(i.e.,	a	straight	line)	to	summarize	the	relationship	between	two	variables:	the
gradient	(b1)	tells	us	what	the	model	looks	like	(its	shape)	and	the	intercept	(b0)	tells	us	where	the	model
is	(its	location	in	geometric	space).

FIGURE	8.2
Lines	that	share	the	same	intercept	but	have	different	gradients,	and	lines	with	the	same	gradients	but



different	intercepts

This	 is	 all	 quite	 abstract,	 so	 let’s	 look	 at	 an	 example.	 Imagine	 that	 I	was	 interested	 in	 predicting
physical	 and	 downloaded	 album	 sales	 (outcome)	 from	 the	 amount	 of	 money	 spent	 advertising	 that
album	(predictor).	We	could	summarize	this	relationship	using	a	linear	model	by	replacing	the	names	of
our	variables	into	equation	(8.1):

Once	we	have	estimated	the	values	of	the	bs	we	would	be	able	to	make	a	prediction	about	album	sales
by	 replacing	 ‘advertising’	with	 a	 number	 representing	 how	much	we	wanted	 to	 spend	 advertising	 an
album.	For	example,	imagine	that	b0	turned	out	to	be	50	and	b1	turned	out	to	be	100.	Our	model	would
be:

Note	that	I	have	replaced	the	betas	with	their	numeric	values.	Now,	we	can	make	a	prediction.	Imagine
we	wanted	to	spend	£5	on	advertising,	we	can	replace	the	variable	‘advertising	budget’	with	this	value
and	solve	the	equation	to	discover	how	many	album	sales	we	will	get:

So,	based	on	our	model	we	can	predict	that	if	we	spend	£5	on	advertising,	we’ll	sell	550	albums.	I’ve
left	 the	error	 term	 in	 there	 to	 remind	you	 that	 this	prediction	will	probably	not	be	perfectly	accurate.
This	value	of	550	album	sales	is	known	as	a	predicted	value.

8.2.2.	The	linear	model	with	several	predictors	②

We	 have	 seen	 that	 we	 can	 use	 a	 straight	 line	 to	 ‘model’	 the	 relationship	 between	 two	 variables.
However,	life	is	usually	more	complicated	than	that:	there	are	often	numerous	variables	that	might	be
related	 to	 the	outcome	of	 interest.	To	 take	our	album	sales	example,	we	might	expect	variables	other



than	simply	advertising	to	have	an	effect.	For	example,	how	much	someone	hears	songs	from	the	album
on	the	radio,	or	 the	‘look’	of	 the	band	might	have	an	 influence.	One	of	 the	beautiful	 things	about	 the
linear	model	is	that	it	can	be	expanded	to	include	as	many	predictors	as	you	like.	We	hinted	at	this	back
in	Chapter	2	(equation	(2.4)).	To	add	a	predictor	all	we	need	to	do	is	place	it	into	the	model	and	give	it	a
b	that	estimates	the	relationship	between	that	predictor	and	the	outcome.	For	example,	if	we	wanted	to
add	the	number	of	plays	of	the	band	on	the	radio	per	week	(airplay),	we	could	add	this	second	predictor
in	general	as:

Note	 that	 all	 that	has	changed	 is	 the	addition	of	 a	 second	predictor	 (X2)	 and	an	associated	parameter
(b2).	To	make	things	more	concrete,	let’s	use	the	variable	names	instead:

The	new	model	includes	a	b-value	for	both	predictors	(and,	of	course,	the	constant,	b0).	If	we	estimate
the	 b-values,	 we	 could	make	 predictions	 about	 album	 sales	 based	 not	 only	 on	 the	 amount	 spent	 on
advertising	but	also	in	terms	of	radio	play.	There	are	only	two	predictors	in	this	model	and	so	we	could
display	this	model	graphically	in	three	dimensions	(Figure	8.3).

The	tinted	trapezium	in	the	diagram	(known	as	the	regression	plane)	is	described	by	equation	(8.5)
and	the	dots	represent	the	observed	data	points.	Like	a	regression	line,	a	regression	plane	aims	to	give
the	best	prediction	for	 the	observed	data.	However,	 there	are	invariably	some	differences	between	the
model	and	the	real-life	data	(this	fact	is	evident	because	some	of	the	dots	do	not	lie	exactly	on	the	tinted
area	of	the	graph).	The	vertical	distances	between	the	regression	plane	and	each	data	point	are	the	errors
or	residuals	in	the	model.	The	b-value	for	advertising	describes	the	slope	of	the	left	and	right	sides	of
the	regression	plane,	whereas	the	b-value	for	airplay	describes	 the	slope	of	 the	 top	and	bottom	of	 the
regression	plane.	Just	like	simple	regression,	knowledge	of	these	two	slopes	tells	us	about	the	shape	of
the	model	(what	it	looks	like)	and	the	intercept	locates	the	regression	plane	in	space.

FIGURE	8.3
Scatterplot	of	the	relationship	between	album	sales,	advertising	budget	and	radio	play



It	is	fairly	easy	to	visualize	a	regression	model	with	two	predictors,	because	it	is	possible	to	plot	the
regression	plane	using	a	3-D	scatterplot.	However,	multiple	regression	can	be	used	with	three,	four	or
even	ten	or	more	predictors.	Although	you	can’t	immediately	visualize	what	such	complex	models	look
like,	or	visualize	what	the	b-values	represent,	you	should	be	able	to	apply	the	principles	of	these	basic
models	to	more	complex	scenarios.	In	fact,	in	general	we	can	add	as	many	predictors	as	we	like,	and	the
linear	model	will	expand	accordingly:

in	which	Y	is	the	outcome	variable,	b1	is	the	coefficient	of	the	first	predictor	(X1),	b2	is	the	coefficient	of
the	second	predictor	(X2),	bn	 is	 the	coefficient	of	 the	nth	predictor	 (Xni),	and	εi	 is	 the	error	 for	 the	 ith
participant.	 (The	 parentheses	 aren’t	 necessary,	 they’re	 just	 there	 to	make	 the	 connection	 to	 equation
(8.1)).	This	equation	illustrates	that	we	can	add	in	as	many	predictors	as	we	like	until	we	reach	the	final
one	(Xn),	but	each	time	we	do,	we	assign	it	a	regression	coefficient	(b).

To	sum	up,	regression	analysis	is	when	we	fit	a	linear	model	to	our	data	and	use	it	to	predict	values
of	 an	 outcome	 variable	 (a.k.a.	 dependent	 variable)	 from	 one	 or	 more	 predictor	 variables	 (a.k.a.
independent	variables).	With	one	predictor	variable,	 the	 technique	 is	 sometimes	 referred	 to	as	simple
regression,	but	when	there	are	several	predictors	in	the	model	we	call	it	multiple	regression.	This	tool
is	incredibly	useful	because	it	enables	us	to	go	a	step	beyond	the	data	that	we	collected.

8.2.3.	Estimating	the	model	②

We	have	seen	that	the	linear	model	is	a	versatile	model	for	summarizing	the	relationship	between	one	or
more	predictor	variables	and	an	outcome	variable.	No	matter	how	many	predictors	we	have,	the	model



can	be	described	entirely	by	a	constant	(b0)	and	by	parameters	associated	with	each	predictor	(bs).	You
might	wonder	 how	we	 estimate	 these	 parameters,	 and	 the	 quick	 answer	 is	 that	we	 typically	 use	 the
method	of	least	squares	that	was	described	in	Section	2.4.3.	We	saw	then	that	we	could	assess	the	fit	of
a	model	(the	example	we	used	was	the	mean)	by	looking	at	the	deviations	between	the	model	and	the
actual	 data	 collected.	These	deviations	were	 the	vertical	 distances	between	what	 the	model	 predicted
and	 each	 data	 point	 that	 was	 actually	 observed.	We	 can	 do	 exactly	 the	 same	 to	 assess	 the	 fit	 of	 a
regression	line	(which,	like	the	mean,	is	a	statistical	model).

Figure	8.4	shows	some	data	about	advertising	budget	and	album	sales.	A	model	has	been	fitted	to
these	data	(the	straight	 line).	The	blue	circles	are	the	observed	data.	The	line	is	 the	model.	The	green
dots	 on	 the	 line	 are	 the	 predicted	 values.	We	 saw	 earlier	 that	 predicted	 values	 are	 the	 values	 of	 the
outcome	variable	calculated	from	the	model.	In	other	words,	if	we	estimated	the	values	of	b	that	define
the	 model	 and	 put	 these	 values	 into	 the	 linear	 model	 (as	 we	 did	 in	 equation	 (8.3)),	 then	 we	 insert
different	values	for	advertising	budget,	the	predicted	values	are	the	resulting	estimates	of	album	sales.
The	question	is	what	values	of	advertising	budget	to	use	to	get	these	predicted	values.	One	very	useful
thing	to	do	is	to	use	the	values	of	the	predictor	that	actually	occurred	in	the	data	from	which	the	model
was	estimated.	If	you	think	about	it,	 this	makes	sense	because	if	 the	model	is	a	perfect	fit	of	 the	data
then	for	a	given	value	of	the	predictor(s)	the	model	should	predict	the	same	value	of	the	outcome	as	was
actually	observed.	In	terms	of	Figure	8.4	this	would	mean	that	 the	green	dots	fall	 in	exactly	the	same
locations	as	the	blue	dots.	As	you	can	see,	they	don’t,	which	shows	that	the	model	is	not	perfect	(and	it
never	will	be):	there	is	error	in	the	predicted	values	–	sometimes	they	overestimate	the	observed	value
of	 the	outcome	and	 sometimes	 they	underestimate	 it.	 In	 regression,	 the	differences	between	what	 the
model	predicts	and	the	observed	data	are	usually	called	residuals	(they	are	the	same	as	deviations	when
we	looked	at	the	mean)	and	they	are	the	vertical	dashed	lines	in	Figure	8.4.

FIGURE	8.4
A	scatterplot	of	some	data	with	a	line	representing	the	general	trend.	The	vertical	lines	(dotted)
represent	the	differences	(or	residuals)	between	the	line	and	the	actual	data



We	saw	in	Chapter	2,	equation	(2.6),	that	if	we	want	to	calculate	the	total	error	in	a	model	we	do	so
by	 looking	at	 the	 squared	differences	between	 the	observed	values	of	 the	outcome,	and	 the	predicted
values	that	come	from	the	model:

Sometimes	the	predicted	value	of	the	outcome	is	less	than	the	actual	value	and	sometimes	it	is	greater,
meaning	 that	 sometimes	 the	 residuals	 are	 positive	 and	 sometimes	 they	 are	 negative.	 If	 we	 add	 the
residuals,	the	positive	ones	will	cancel	out	the	negative	ones,	so	we	square	them	before	we	add	them	up
(this	idea	should	be	familiar	from	Section	2.4.2).	Therefore,	 to	assess	 the	error	 in	a	regression	model,
just	like	when	we	assessed	the	fit	of	the	mean	using	the	variance,	we	use	a	sum	of	squared	errors,	and
because	in	regression	we	call	these	errors	residuals,	we	refer	to	this	total	as	the	sum	of	squared	residuals
or	residual	sum	of	squares	(SSR).	The	residual	sum	of	squares	is	a	gauge	of	how	well	a	particular	line
fits	the	data:	if	the	squared	differences	are	large,	the	line	is	not	representative	of	the	data;	if	the	squared
differences	are	small,	the	line	is	representative.

How	 do	we	 find	 the	 optimal	model	 to	 summarize	 our	 data?	You	 could,	 if	 you	were	 particularly
bored,	calculate	the	residual	sum	of	squares	for	every	possible	line	that	could	be	fitted	to	your	data	and
then	compare	these	‘goodness-of-fit’	measures.	The	one	with	the	lowest	SSR	would	be	the	best	fitting
model.	However,	we	have	better	things	to	do,	so	just	like	when	we	estimate	the	mean,	we	can	use	the
method	 of	 least	 squares	 to	 estimate	 the	 parameters	 (b)	 that	 define	 the	 model	 for	 which	 the	 sum	 of
squared	 errors	 is	 the	minimum	 it	 can	 be	 (given	 the	 data).	 This	method	 is	 known	 as	 ordinary	 least
squares	(OLS)	 regression.	How	exactly	the	method	of	least	squares	does	this	is	beyond	me:	it	uses	a
mathematical	 technique	 for	 finding	maxima	and	minima	 to	 find	 the	b-values	 that	 describe	 the	model
that	minimizes	the	sum	of	squared	differences.



I	don’t	really	know	much	more	about	it	than	that,	to	be	honest,	so	with	one	predictor	I	tend	to	think
of	the	process	as	a	little	bearded	wizard	called	Nephwick	the	Line	Finder	who	just	magically	finds	lines
of	best	fit.	Yes,	he	lives	inside	your	computer.	For	more	complex	models,	Nephwick	invites	his	brother
Clungglewad	the	Beta	Seeker	for	tea	and	cake	inside	your	computer	and	together	they	stare	into	the	tea
leaves	in	their	cups	until	the	optimal	beta-values	are	revealed	to	them.	Then	they	compare	beard	growth
since	their	last	meeting.	In	short,	they	use	the	method	of	least	squares	to	estimate	the	values	of	b	 that
describe	the	regression	model	that	best	fits	the	data.

8.2.4.	Assessing	the	goodness	of	fit,	sums	of	squares,	R	and	R2	①

Once	Nephwick	and	Clungglewad	have	found	the	model	of	best	fit,	it	is	important	that	we	assess	how
well	this	model	fits	the	actual	data	(we	assess	the	goodness	of	fit	of	the	model).	We	do	this	because	even
though	the	model	is	the	best	one	available,	it	can	still	be	a	lousy	fit	to	the	data.	We	saw	above	that	the
residual	sum	of	squares,	SSR,	is	a	measure	of	how	much	error	there	is	in	the	model:	it	gives	us	an	idea
of	how	much	error	 there	 is	 in	prediction,	but	 it	doesn’t	 tell	us	whether	using	 the	model	 is	better	 than
nothing.	It	is	not	enough	to	simply	assess	the	error	within	the	model,	we	need	to	compare	it	against	a
baseline	to	see	whether	it	‘improves’	how	well	we	can	predict	 the	outcome.	So,	we	fit	 the	most	basic
model	we	can,	we	use	equation	(8.7)	 to	 calculate	 the	 fit	 of	 this	baseline	model.	Then	we	 fit	 the	best
model,	and	also	calculate	the	error,	SSR,	within	it	using	equation	(8.7).	Basically	if	the	best	model	is	any
good	then	it	should	have	significantly	less	error	within	it	than	our	basic	model.

This	 is	 all	 quite	 abstract,	 so	 let’s	 go	 back	 to	 our	 example	 of	 predicting	 album	 sales	 (Y)	 from	 the
amount	of	money	spent	advertising	 that	album	(X).	One	day	my	boss	came	 in	 to	my	office	and	said:
‘Andy,	I	know	you	wanted	to	be	a	rock	star	and	you’ve	ended	up	working	as	my	stats-monkey,	but	how
many	albums	will	we	sell	if	we	spend	£100,000	on	advertising?’	If	I	didn’t	have	an	accurate	model	of
the	relationship	between	album	sales	and	advertising,	what	would	my	best	guess	be?	Probably	the	best
answer	I	could	give	would	be	the	mean	number	of	album	sales	(say,	200,000)	because	on	average	that’s
how	 many	 albums	 we	 expect	 to	 sell.	 This	 response	 might	 well	 satisfy	 a	 brainless	 record	 company
executive	(who	didn’t	offer	my	band	a	recording	contract).	However,	what	if	he	had	asked:	‘How	many
albums	will	we	sell	if	we	spend	£1	on	advertising?’	Again,	in	the	absence	of	any	accurate	information,
my	best	guess	would	be	to	give	the	average	number	of	sales	(200,000).	There	is	a	problem:	whatever
amount	of	money	is	spent	on	advertising	I	always	predict	the	same	levels	of	sales.	As	such,	the	mean	is
a	model	of	‘no	relationship’	at	all	between	the	variables.	It	should	be	pretty	clear,	then,	that	the	mean	is
fairly	useless	as	a	model	of	a	relationship	between	two	variables	–	but	it	is	the	simplest	model	available.

So,	as	a	basic	 strategy	 for	predicting	 the	outcome,	we	might	choose	 to	use	 the	mean,	because	on
average	it	will	be	a	fairly	good	guess	of	an	outcome.	Using	the	mean	as	a	model,	we	can	calculate	the



difference	between	the	observed	values,	and	the	values	predicted	by	the	mean	(equation	(8.7)).	We	saw
in	Section	2.4.1	that	we	square	all	of	these	differences	to	give	us	the	sum	of	squared	differences.	This
sum	of	squared	differences	is	known	as	the	total	sum	of	squares	(denoted	SST)	because	it	is	the	total
amount	of	differences	present	when	the	most	basic	model	is	applied	to	the	data.	This	value	represents
how	good	the	mean	is	as	a	model	of	the	observed	data.	Now,	if	we	fit	a	more	sophisticated	model	to	the
data,	such	as	a	regression	model,	we	can	again	work	out	the	differences	between	this	new	model	and	the
observed	data	(again	using	equation	(8.7)).	This	value	is	the	residual	sum	of	squares	(SSR)	discussed	in
the	previous	section.	This	value	represents	the	degree	of	inaccuracy	when	the	best	model	is	fitted	to	the
data.	We	can	use	 these	 two	values	 to	calculate	how	much	better	 the	 regression	model	 is	 than	using	a
baseline	 model	 such	 as	 the	 mean	 (i.e.,	 how	 much	 better	 the	 best	 possible	 model	 is	 than	 the	 worst
model).	The	improvement	in	prediction	resulting	from	using	the	regression	model	rather	than	the	mean
is	calculated	by	calculating	the	difference	between	SST	and	SSR.	This	difference	shows	us	the	reduction
in	the	inaccuracy	of	the	model	resulting	from	fitting	the	regression	model	to	the	data.	This	improvement
is	the	model	sum	of	squares	(SSM).	Figure	8.5	shows	each	sum	of	squares	graphically	for	the	example
where	the	regression	model	is	a	line	(i.e.,	one	predictor)	but	the	same	principles	apply	with	more	than
one	predictor.

FIGURE	8.5
Diagram	showing	from	where	the	regression	sums	of	squares	derive



If	 the	 value	 of	 SSM	 is	 large,	 then	 the	 regression	model	 is	 very	 different	 from	 using	 the	mean	 to
predict	 the	outcome	variable.	This	 implies	 that	 the	 regression	model	has	made	a	big	 improvement	 to
how	well	 the	outcome	variable	 can	be	predicted.	However,	 if	SSM	 is	 small	 then	using	 the	 regression
model	 is	 little	better	 than	using	the	mean	(i.e.,	 the	regression	model	 is	no	better	 than	taking	our	‘best
guess’).	A	useful	measure	arising	from	these	sums	of	squares	is	the	proportion	of	improvement	due	to
the	model.	This	 is	easily	calculated	by	dividing	 the	sum	of	squares	for	 the	model	by	 the	 total	sum	of
squares	to	give	a	quantity	called	R2:

To	express	this	value	as	a	percentage	you	should	multiply	it	by	100.	This	R2	represents	the	amount	of
variance	 in	 the	 outcome	 explained	 by	 the	model	 (SSM)	 relative	 to	 how	much	 variation	 there	was	 to
explain	in	the	first	place	(SST);	it	is	the	same	as	the	R2	we	met	in	Chapter	7	(Section	7.4.2.2)	and	it	 is
interpreted	in	the	same	way:	as	a	percentage,	it	represents	the	percentage	of	the	variation	in	the	outcome
that	 can	 be	 explained	 by	 the	 model.	We	 can	 take	 the	 square	 root	 of	 this	 value	 to	 obtain	 Pearson’s
correlation	coefficient	 for	 the	 relationship	between	 the	values	of	 the	outcome	predicted	by	 the	model
and	the	values	of	 the	outcome	we	actually	observed.5	As	such,	 the	correlation	coefficient	provides	us
with	 a	 good	 estimate	 of	 the	 overall	 fit	 of	 the	 regression	 model	 (i.e.,	 the	 correspondence	 between
predicted	 values	 of	 the	 outcome	 and	 the	 actual	 values),	 and	 R2	 provides	 us	 with	 a	 gauge	 of	 the
substantive	size	of	the	model	fit.6

A	second	use	of	the	sums	of	squares	in	assessing	the	model	is	through	the	F-test.	I	mentioned	way
back	in	Chapter	2	that	test	statistics	(like	F)	are	usually	the	amount	of	systematic	variance	divided	by
the	amount	of	unsystematic	variance,	or,	put	another	way,	the	model	compared	to	the	error	in	the	model.
This	 is	 true	 here:	 F	 is	 based	 upon	 the	 ratio	 of	 the	 improvement	 due	 to	 the	 model	 (SSM)	 and	 the
difference	 between	 the	 model	 and	 the	 observed	 data	 (SSR).	 Actually,	 because	 the	 sums	 of	 squares
depend	 on	 the	 number	 of	 differences	 that	 we	 have	 added	 up,	 we	 use	 the	 average	 sums	 of	 squares
(referred	 to	 as	 the	mean	squares	 or	MS).	 To	work	 out	 the	mean	 sums	 of	 squares	we	 divide	 by	 the
degrees	 of	 freedom	 (this	 is	 comparable	 to	 calculating	 the	 variance	 from	 the	 sums	 of	 squares	 –	 see
Section	2.4.2).	For	SSM	the	degrees	of	freedom	are	the	number	of	variables	in	the	model,	and	for	SSR
they	are	the	number	of	observations	minus	the	number	of	parameters	being	estimated	(i.e.,	the	number
of	beta	coefficients	including	the	constant).	The	result	is	the	mean	squares	for	the	model	(MSM)	and	the
residual	mean	squares	(MSR).	At	this	stage	it	isn’t	essential	that	you	understand	how	the	mean	squares
are	derived	(it	is	explained	in	Chapter	11).	However,	it	is	important	that	you	understand	that	the	F-ratio,

is	a	measure	of	how	much	the	model	has	improved	the	prediction	of	the	outcome	compared	to	the	level
of	inaccuracy	of	the	model.	If	a	model	is	good,	then	we	expect	the	improvement	in	prediction	due	to	the
model	to	be	large	(so	MSM	will	be	large)	and	the	difference	between	the	model	and	the	observed	data	to
be	small	(so	MSR	will	be	small).	In	short,	a	good	model	should	have	a	large	F-ratio	(greater	than	1	at
least)	because	the	top	of	equation	(8.9)	will	be	bigger	than	the	bottom.

The	 exact	 magnitude	 of	 this	F-ratio	 can	 be	 assessed	 using	 critical	 values	 for	 the	 corresponding
degrees	of	freedom	(as	in	the	Appendix).	The	F-statistic	can	also	be	used	to	calculate	the	significance	of
R2	using	the	following	equation:



in	which	N	is	the	number	of	cases	or	participants,	and	k	is	the	number	of	predictors	in	the	model.	This	F
tests	the	null	hypothesis	that	R2	is	zero	(i.e.,	there	is	no	improvement	in	the	sum	of	squared	error	due	to
fitting	the	model).

8.2.5.	Assessing	individual	predictors	①

We’ve	seen	that	any	predictor	in	a	regression	model	has	a	coefficient	(b1),	which	in	simple	regression
represents	 the	 gradient	 of	 the	 regression	 line.	 The	 value	 of	 b	 represents	 the	 change	 in	 the	 outcome
resulting	from	a	unit	change	in	the	predictor.	If	the	model	was	useless	at	predicting	the	outcome,	then	if
the	value	of	the	predictor	changed,	what	might	we	expect	the	change	in	the	outcome	to	be?	Well,	if	the
model	was	very	bad	then	we	would	expect	the	change	in	the	outcome	to	be	zero.	Think	back	to	Figure
8.5	 (see	 the	 panel	 representing	 SST)	 in	 which	 we	 saw	 that	 using	 the	 mean	 was	 a	 very	 bad	 way	 of
predicting	the	outcome.	In	fact,	the	line	representing	the	mean	is	flat,	which	means	that	as	the	predictor
variable	 changes,	 the	 value	 of	 the	 outcome	does	not	 change	 (because	 for	 each	 level	 of	 the	 predictor
variable,	we	predict	that	the	outcome	will	equal	the	mean	value).	The	important	point	here	is	that	a	bad
model	 (such	 as	 the	 mean)	 will	 have	 regression	 coefficients	 of	 0	 for	 the	 predictors.	 A	 regression
coefficient	of	0	means:	(1)	a	unit	change	in	the	predictor	variable	results	in	no	change	in	the	predicted
value	of	 the	outcome	(the	predicted	value	of	 the	outcome	does	not	change	at	all);	 and	with	only	one
predictor	in	the	model	(2)	the	gradient	of	the	regression	line	is	0,	meaning	that	the	regression	line	is	flat.
Hopefully,	you’ll	see	that	logically	if	a	variable	significantly	predicts	an	outcome,	then	it	should	have	a
b-value	that	is	different	from	zero.	This	hypothesis	is	tested	using	a	t-test	(see	Chapter	9).	The	t-statistic
tests	the	null	hypothesis	that	the	value	of	b	is	0:	therefore,	if	it	is	significant	we	gain	confidence	in	the
hypothesis	that	the	b-value	 is	significantly	different	from	0	and	that	 the	predictor	variable	contributes
significantly	to	our	ability	to	estimate	values	of	the	outcome.

Like	F,	 the	 t-statistic	 is	 also	 based	 on	 the	 ratio	 of	 explained	 variance	 to	 unexplained	 variance	 or
error.	Well,	actually,	what	we’re	interested	in	here	is	not	so	much	variance	but	whether	the	b	we	have	is
big	compared	to	the	amount	of	error	in	that	estimate.	To	estimate	how	much	error	we	could	expect	to
find	in	b	we	use	the	standard	error.	The	standard	error	tells	us	something	about	how	different	b-values
would	be	across	different	samples	(think	back	to	Section	2.5.1).	If	the	standard	error	is	very	small,	then
it	means	that	most	samples	are	likely	to	have	a	b-value	similar	to	the	one	in	our	sample	(because	there	is
little	variation	across	samples).	The	t-test	tells	us	whether	the	b-value	is	different	from	0	relative	to	the
variation	in	b-values	across	samples.	When	the	standard	error	is	small	even	a	small	deviation	from	zero
can	reflect	a	meaningful	difference	because	b	is	representative	of	the	majority	of	possible	samples.

Equation	(8.11)	shows	how	the	t-test	is	calculated	and	you’ll	find	a	general	version	of	this	equation
in	Chapter	9	(equation	(9.2)).	The	bexpected	is	simply	the	value	of	b	that	we	would	expect	to	obtain	if	the
null	hypothesis	were	true.	I	mentioned	earlier	that	the	null	hypothesis	is	that	b	is	0	and	so	this	value	can
be	replaced	by	0.	The	equation	simplifies	 to	become	the	observed	value	of	b	divided	by	 the	standard
error	with	which	it	is	associated:



The	values	of	t	have	a	special	distribution	that	differs	according	to	the	degrees	of	freedom	for	the	test.	In
this	context,	the	degrees	of	freedom	are	N	−	p	−	1,	where	N	is	the	total	sample	size	and	p	is	the	number
of	 predictors.	 In	 simple	 regression	 when	 we	 have	 only	 one	 predictor,	 this	 reduces	 down	 to	N	 −	 2.
Having	established	which	t-distribution	needs	to	be	used,	the	observed	value	of	t	can	then	be	compared
to	the	values	that	we	would	expect	to	find	if	there	was	no	effect	(i.e.,	b	=	0):	if	t	is	very	large	then	it	is
unlikely	 to	have	occurred	when	 there	 is	no	effect	 (these	values	can	be	found	in	 the	Appendix).	SPSS
provides	the	exact	probability	that	the	observed	value	(or	a	larger	one)	of	t	would	occur	if	the	value	of	b
was,	 in	fact,	0.	As	a	general	rule,	 if	 this	observed	significance	 is	 less	 than	 .05,	 then	scientists	assume
that	b	is	significantly	different	from	0;	put	another	way,	the	predictor	makes	a	significant	contribution	to
predicting	the	outcome.

8.3.	Bias	in	regression	models?	②

In	Chapter	5	we	saw	that	statistical	models	can	be	biased	by	unusual	cases	or	by	failing	to	meet	certain
assumptions.	Therefore,	when	we	have	produced	a	model	based	on	a	sample	of	data,	and	assessed	the
fit,	there	are	two	important	questions	to	ask:	(1)	is	the	model	influenced	by	a	small	number	of	cases;	and
(2)	can	the	model	generalize	to	other	samples?	These	questions	are,	in	some	sense,	hierarchical	because
we	wouldn’t	want	to	generalize	a	bad	model.	However,	it	is	a	mistake	to	think	that	because	a	model	fits
the	 observed	 data	 well	 we	 can	 draw	 conclusions	 beyond	 our	 sample.	Generalization	 is	 a	 critical
additional	step,	and	if	we	find	that	our	model	is	not	generalizable,	then	we	must	restrict	any	conclusions
based	on	 the	model	 to	 the	sample	used.	 In	Section	8.3.1	we	will	 look	at	how	we	establish	whether	a
model	has	been	biased	by	unusual	cases,	and	 in	Section	8.3.2	we	move	on	 to	 look	at	how	we	assess
whether	a	model	can	be	used	to	make	inferences	beyond	the	sample	of	data	that	has	been	collected.

8.3.1.	Is	the	model	biased	by	unusual	cases?	②

To	answer	the	question	of	whether	the	model	is	influenced	by	a	small	number	of	cases,	we	can	look	for
outliers	and	influential	cases	(the	difference	is	explained	in	Jane	Superbrain	Box	8.1).	We	will	 look	at
these	in	turn.



8.3.1.1.	Outliers	and	residuals	②

An	outlier	is	a	case	that	differs	substantially	from	the	main	trend	of	the	data	(see	Section	5.2.2).	Outliers
can	affect	 the	estimates	of	 the	 regression	coefficients.	For	example,	Figure	8.6	uses	 the	same	data	 as
Figure	8.4	except	that	the	score	of	one	album	has	been	changed	to	be	an	outlier	(in	this	case	an	album
that	 sold	 relatively	 few	 despite	 a	 very	 large	 advertising	 budget).	 The	 green	 line	 shows	 the	 original
model,	and	the	red	line	shows	the	model	with	the	outlier	included.	The	outlier	has	a	dramatic	effect	on
the	regression	model:	the	line	becomes	flatter	(i.e.,	b1	is	smaller)	and	the	intercept	increases	(i.e.,	b0	 is
larger).	If	outliers	affect	the	estimates	of	the	bs	that	define	the	model	then	it	is	important	to	detect	these
cases.

FIGURE	8.6
Graph	demonstrating	the	effect	of	an	outlier.	The	green	line	represents	the	original	regression	line	for
these	data,	whereas	the	red	line	represents	the	regression	line	when	an	outlier	is	present

How	do	you	think	that	you	might	detect	an	outlier?	Well,	we	know	that	an	outlier,	by	its	nature,	is
very	different	from	all	of	the	other	scores.	This	being	true,	do	you	think	that	the	model	will	predict	that
person’s	score	very	accurately?	The	answer	is	no:	looking	at	Figure	8.6,	it	is	evident	that	even	though
the	outlier	has	biased	the	model,	the	model	still	predicts	that	one	value	very	badly	(the	regression	line	is
a	long	way	from	the	outlier).	Therefore,	if	we	were	to	work	out	the	differences	between	the	data	values
that	were	collected,	and	 the	values	predicted	by	 the	model,	we	could	detect	an	outlier	by	 looking	 for
large	differences.	This	process	is	the	same	as	looking	for	cases	that	the	model	predicts	inaccurately.	We
saw	earlier	that	the	differences	between	the	values	of	the	outcome	predicted	by	the	model	and	the	values



of	the	outcome	observed	in	the	sample	are	called	residuals.	These	residuals	represent	the	error	present
in	the	model.	If	a	model	fits	 the	sample	data	well	 then	all	residuals	will	be	small	(if	 the	model	was	a
perfect	fit	of	the	sample	data	–	all	data	points	fall	on	the	regression	line	–	then	all	residuals	would	be
zero).	If	a	model	is	a	poor	fit	of	the	sample	data	then	the	residuals	will	be	large.	Also,	if	any	cases	stand
out	as	having	a	large	residual,	then	they	could	be	outliers.
	

SELF-TEST	Residuals	are	used	to	compute	which	of	the	three	sums	of	squares?

The	normal	or	unstandardized	residuals	described	above	are	measured	in	the	same	units	as	the	outcome
variable	and	so	are	difficult	to	interpret	across	different	models.	All	we	can	do	is	to	look	for	residuals
that	stand	out	as	being	particularly	large:	we	cannot	define	a	universal	cut-off	point	for	what	constitutes
a	 large	 residual.	 To	 overcome	 this	 problem,	we	 use	 standardized	residuals,	 which	 are	 the	 residuals
converted	to	z-scores	(see	Section	1.6.4),	which	means	they	are	converted	into	standard	deviation	units
(i.e.,	 they	are	distributed	around	a	mean	of	0	with	a	standard	deviation	of	1).	By	converting	residuals
into	z-scores	(standardized	residuals)	we	can	compare	residuals	from	different	models	and	use	what	we
know	about	the	properties	of	z-scores	to	devise	universal	guidelines	for	what	constitutes	an	acceptable
(or	unacceptable)	value.	For	example,	we	know	from	Chapter	1	 that	 in	a	normally	distributed	sample,
95%	of	 z-scores	 should	 lie	 between	−1.96	 and	+1.96,	 99%	should	 lie	 between	−2.58	 and	+2.58,	 and
99.9%	(i.e.,	nearly	all	of	them)	should	lie	between	−3.29	and	+3.29.	Some	general	rules	for	standardized
residuals	 are	 derived	 from	 these	 facts:	 (1)	 standardized	 residuals	with	 an	 absolute	 value	 greater	 than
3.29	(we	can	use	3	as	an	approximation)	are	cause	for	concern	because	in	an	average	sample	a	value
this	high	is	unlikely	to	occur;	(2)	if	more	than	1%	of	our	sample	cases	have	standardized	residuals	with
an	 absolute	value	greater	 than	2.58	 (we	usually	 just	 say	2.5)	 there	 is	 evidence	 that	 the	 level	 of	 error
within	our	model	is	unacceptable	(the	model	is	a	fairly	poor	fit	of	the	sample	data);	and	(3)	if	more	than
5%	of	 cases	 have	 standardized	 residuals	with	 an	 absolute	 value	 greater	 than	 1.96	 (we	 can	 use	 2	 for
convenience)	then	there	is	also	evidence	that	the	model	is	a	poor	representation	of	the	actual	data.

A	third	form	of	residual	is	the	Studentized	residual,	which	is	the	unstandardized	residual	divided
by	 an	 estimate	 of	 its	 standard	 deviation	 that	 varies	 point	 by	 point.	 These	 residuals	 have	 the	 same
properties	as	the	standardized	residuals	but	usually	provide	a	more	precise	estimate	of	the	error	variance
of	a	specific	case.

8.3.1.2.	Influential	cases	③

As	well	as	testing	for	outliers	by	looking	at	the	error	in	the	model,	it	is	also	possible	to	look	at	whether
certain	cases	exert	undue	influence	over	the	parameters	of	the	model.	So,	if	we	were	to	delete	a	certain
case,	would	we	 obtain	 different	 regression	 coefficients?	 This	 type	 of	 analysis	 can	 help	 to	 determine
whether	 the	 regression	model	 is	 stable	across	 the	sample,	or	whether	 it	 is	biased	by	a	 few	 influential
cases.	Again,	this	process	will	unveil	outliers.

There	are	several	residual	statistics	that	can	be	used	to	assess	the	influence	of	a	particular	case.	One
statistic	 is	 the	adjusted	predicted	value	 for	 a	 case	when	 that	 case	 is	 excluded	 from	 the	 analysis.	 In



effect,	the	computer	calculates	a	new	model	without	a	particular	case	and	then	uses	this	new	model	to
predict	the	value	of	the	outcome	variable	for	the	case	that	was	excluded.	If	a	case	does	not	exert	a	large
influence	over	 the	model	 then	we	would	expect	 the	adjusted	predicted	value	 to	be	very	similar	 to	 the
predicted	value	when	the	case	is	included.	Put	simply,	if	the	model	is	stable	then	the	predicted	value	of	a
case	should	be	the	same	regardless	of	whether	or	not	that	case	was	used	to	estimate	the	model.	We	can
also	 look	 at	 the	 residual	 based	 on	 the	 adjusted	 predicted	 value:	 that	 is,	 the	 difference	 between	 the
adjusted	 predicted	 value	 and	 the	 original	 observed	 value.	 This	 is	 the	 deleted	 residual.	 The	 deleted
residual	can	be	divided	by	 the	 standard	error	 to	give	a	 standardized	value	known	as	 the	Studentized
deleted	 residual.	 This	 residual	 can	 be	 compared	 across	 different	 regression	 analyses	 because	 it	 is
measured	in	standard	units.

SMART	ALEX	ONLY

The	deleted	residuals	are	very	useful	to	assess	the	influence	of	a	case	on	the	ability	of	the	model	to
predict	that	case.	However,	they	do	not	provide	any	information	about	how	a	case	influences	the	model
as	a	whole	(i.e.,	the	impact	that	a	case	has	on	the	model’s	ability	to	predict	all	cases).	One	statistic	that
does	consider	the	effect	of	a	single	case	on	the	model	as	a	whole	is	Cook’s	distance.	Cook’s	distance	is
a	 measure	 of	 the	 overall	 influence	 of	 a	 case	 on	 the	 model,	 and	 Cook	 and	 Weisberg	 (1982)	 have
suggested	that	values	greater	than	1	may	be	cause	for	concern.

A	 second	 measure	 of	 influence	 is	 leverage	 (sometimes	 called	 hat	 values),	 which	 gauges	 the
influence	of	the	observed	value	of	the	outcome	variable	over	the	predicted	values.	The	average	leverage
value	is	defined	as	(k	+	1)/n,	in	which	k	is	the	number	of	predictors	in	the	model	and	n	is	the	number	of
participants.7	The	maximum	value	for	leverage	is	(N	–	1)/N;	however,	SPSS	calculates	a	version	of	the
leverage	 that	 takes	 a	 maximum	 value	 of	 1	 (indicating	 that	 the	 case	 has	 complete	 influence	 over
prediction).

If	no	cases	exert	undue	influence	over	the	model	then	we	would	expect	all	of	the	leverage	values	to
be	close	to	the	average	value	((k	+	1)/n).
Hoaglin	and	Welsch	(1978)	recommend	investigating	cases	with	values	greater	than	twice	the
average	(2(k	+	1)/n).
Stevens	(2002)	recommends	using	three	times	the	average	(3(k	+	1)/n)	as	a	cut-off	point	for
identifying	cases	having	undue	influence.

We	will	see	how	to	use	these	cut-off	points	later.	However,	cases	with	large	leverage	values	will	not
necessarily	 have	 a	 large	 influence	 on	 the	 regression	 coefficients	 because	 they	 are	 measured	 on	 the
outcome	variables	rather	than	the	predictors.

Related	to	the	leverage	values	are	the	Mahalanobis	distances,	which	measure	the	distance	of	cases
from	 the	 mean(s)	 of	 the	 predictor	 variable(s).	 Look	 for	 the	 cases	 with	 the	 highest	 values.	 These
distances	 have	 a	 chi-square	 distribution,	 with	 degrees	 of	 freedom	 equal	 to	 the	 number	 of	 predictors
(Tabachnick	&	Fidell,	2012).	One	way	 to	establish	a	cut-off	point	 is	 to	 find	 the	critical	value	of	chi-
square	for	the	desired	alpha	level	(values	for	p	=	.05	and	.01	are	in	the	Appendix).	For	example,	with
three	predictors,	a	distance	greater	than	7.81	(p	=	.05)	or	11.34	(p	=	.01)	would	be	cause	for	concern.



Barnett	 and	Lewis	 (1978)	 have	 also	 produced	 a	 table	 of	 critical	 values	 dependent	 on	 the	 number	 of
predictors	and	the	sample	size.	From	their	work	it	is	clear	that	even	with	large	samples	(N	=	500)	and
five	predictors,	values	above	25	are	cause	 for	concern.	 In	 smaller	 samples	 (N	=	100)	 and	with	 fewer
predictors	(namely,	three),	values	greater	than	15	are	problematic,	and	in	very	small	samples	(N	=	30)
with	only	two	predictors,	values,	greater	than	11	should	be	examined.

It	is	possible	to	run	the	regression	analysis	with	a	case	included	and	then	rerun	the	analysis	with	that
same	 case	 excluded.	 If	 we	 did	 this,	 undoubtedly	 there	 would	 be	 some	 difference	 between	 the	 b
coefficients	 in	 the	 two	 regression	 equations.	 This	 difference	 would	 tell	 us	 how	 much	 influence	 a
particular	case	has	on	the	parameters	of	the	regression	model.	To	take	a	hypothetical	example,	imagine
two	variables	that	had	a	perfect	negative	relationship	except	for	a	single	case	(case	30).	If	a	regression
analysis	was	done	on	 the	29	cases	 that	were	perfectly	 linearly	 related	 then	we	would	get	 a	model	 in
which	the	predictor	variable	X	perfectly	predicts	the	outcome	variable	Y,	and	there	are	no	errors.	If	we
then	 ran	 the	 analysis	 but	 this	 time	 include	 the	 case	 that	 didn’t	 conform	 (case	 30),	 then	 the	 resulting
model	would	have	different	parameters.	Some	data	are	 stored	 in	 the	 file	DFBeta.sav	which	 illustrate
such	a	situation.

FIGURE	8.7
Prasanta	Chandra	Mahalanobis	staring	into	his	distances

	

SELF-TEST	Once	you	have	read	Section	8.4,	run	a	regression	first	with	all	the	cases	included
and	then	with	case	30	deleted.

The	results	are	summarized	in	Table	8.1,	which	shows:	(1)	the	parameters	for	the	regression	model
when	the	extreme	case	is	included	or	excluded;	(2)	the	resulting	regression	equations;	and	(3)	the	value
of	Y	When	case	30’s	 score	on	 the	X	variable	 (which	 is	obtained	by	 replacing	 the	X	 in	 the	 regression
equation	with	participant	30’s	score	for	X,	which	was	1).

When	case	30	is	excluded,	these	data	have	a	perfect	negative	relationship;	hence	the	coefficient	for
the	 predictor	 (b1)	 is	 −1	 (remember	 that	 in	 simple	 regression	 this	 term	 is	 the	 same	 as	 Pearson’s
correlation	coefficient),	and	the	coefficient	for	the	constant	(the	intercept,	b0)	is	31.	However,	when	case



30	 is	 included,	 both	 parameters	 are	 reduced8	 and	 the	 difference	 between	 the	 parameters	 is	 also
displayed.	The	difference	between	a	parameter	estimated	using	all	cases	and	estimated	when	one	case	is
excluded	is	known	as	the	DFBeta.	DFBeta	is	calculated	for	every	case	and	for	each	of	the	parameters	in
the	model.	So,	in	our	hypothetical	example,	the	DFBeta	for	the	constant	is	−2,	and	the	DFBeta	for	the
predictor	variable	is	0.1.	By	looking	at	the	values	of	DFBeta,	it	is	possible	to	identify	cases	that	have	a
large	influence	on	the	parameters	of	 the	regression	model.	Again,	 the	units	of	measurement	used	will
affect	these	values	and	so	SPSS	produces	a	standardized	DFBeta.	These	standardized	values	are	easier
to	 use	 because	 universal	 cut-off	 points	 can	 be	 applied.	 In	 this	 case	 absolute	 values	 above	 1	 indicate
cases	 that	 substantially	 influence	 the	model	 parameters	 (although	Stevens	 (2002)	 suggests	 looking	 at
cases	with	absolute	values	greater	than	2).

TABLE	8.1	The	difference	in	the	parameters	of	the	regression	model	when	one	case	is	excluded

A	related	statistic	is	the	DFFit,	which	is	the	difference	between	the	predicted	value	for	a	case	when
the	model	is	calculated	including	that	case	and	when	the	model	is	calculated	excluding	that	case:	in	this
example	the	value	is	−1.90	(see	Table	8.1).	If	a	case	is	not	influential	then	its	DFFit	should	be	zero	–
hence,	we	expect	non-influential	cases	to	have	small	DFFit	values.	However,	we	have	the	problem	that
this	statistic	depends	on	 the	units	of	measurement	of	 the	outcome	and	so	a	DFFit	of	0.5	will	be	very
small	if	the	outcome	ranges	from	1	to	100,	but	very	large	if	the	outcome	varies	from	0	to	1.	Therefore,
SPSS	also	produces	standardized	versions	of	the	DFFit	values	(Standardized	DFFit).

A	final	measure	is	the	covariance	ratio	(CVR),	which	is	a	measure	of	whether	a	case	influences	the
variance	of	the	regression	parameters.	A	description	of	the	computation	of	this	statistic	leaves	me	dazed
and	confused,	so	suffice	to	say	that	when	this	ratio	is	close	to	1	the	case	has	very	little	influence	on	the
variances	of	the	model	parameters.	Belsey,	Kuh,	and	Welsch	(1980)	recommend	the	following:

If	CVRi	>	1	+	[3(k	+	1)/n]	then	deleting	the	ith	case	will	damage	the	precision	of	some	of	the
model’s	parameters.
If	CVRi	<	1	−	[3(k	+	1)/n]	then	deleting	the	ith	case	will	improve	the	precision	of	some	of	the
model’s	parameters.

In	both	equations,	k	is	the	number	of	predictors,	CVRi	is	the	covariance	ratio	for	the	ith	participant,
and	n	is	the	sample	size.

8.3.1.3.	A	final	comment	on	diagnostic	statistics	②

There	 are	 a	 lot	 of	 diagnostic	 statistics	 that	 should	 be	 examined	 after	 a	 regression	 analysis,	 and	 it	 is
difficult	 to	 summarize	 this	wealth	of	material	 into	a	concise	conclusion.	However,	one	 thing	 I	would
like	to	stress	is	a	point	made	by	Belsey	et	al.	(1980)	who	noted	the	dangers	inherent	in	these	procedures.



The	point	is	that	diagnostics	are	tools	that	enable	you	to	see	how	good	or	bad	your	model	is	in	terms	of
fitting	 the	 sampled	 data.	 They	 are	 a	way	 of	 assessing	 your	model.	 They	 are	not,	 however,	 a	way	 of
justifying	the	removal	of	data	points	to	effect	some	desirable	change	in	the	regression	parameters	(e.g.,
deleting	a	case	 that	changes	a	non-significant	b-value	 into	a	significant	one).	Stevens	(2002),	as	ever,
offers	excellent	advice:

EVERYBODY
	
If	a	point	is	a	significant	outlier	on	Y,	but	its	Cook’s	distance	is	<	1,	there	is	no	real	need	to	delete
that	point	since	it	does	not	have	a	large	effect	on	the	regression	analysis.	However,	one	should	still
be	interested	in	studying	such	points	further	to	understand	why	they	did	not	fit	the	model.	(p.	135)

8.3.2.	Generalizing	the	model	②

When	 a	 regression	 analysis	 is	 done,	 an	 equation	 can	 be	 produced	 that	 is	 correct	 for	 the	 sample	 of
observed	values.	However,	we	are	usually	interested	in	generalizing	our	findings	outside	of	the	sample.
For	a	regression	model	to	generalize	we	must	be	sure	that	underlying	assumptions	have	been	met,	and
to	test	whether	the	model	does	generalize	we	can	look	at	cross-validating	it.

8.3.2.1.	Assumptions	of	the	linear	model	②

We	have	already	looked	at	the	main	assumptions	of	the	linear	model	and	how	to	assess	them	in	Chapter
5.	I	will	recap	the	main	ones	in	order	of	importance	(Gelman	&	Hill,	2007):

Additivity	and	linearity:	The	outcome	variable	should,	in	reality,	be	linearly	related	to	any
predictors	and,	with	several	predictors,	their	combined	effect	is	best	described	by	adding	their
effects	together.	In	other	words,	the	process	we’re	trying	to	model	can	be	described	by	the	linear
model.	If	this	assumption	isn’t	met	then	the	model	is	invalid.	You	can	sometimes	transform
variables	to	make	their	relationships	linear	(see	Chapter	5).



JANE	SUPERBRAIN	8.1

The	difference	between	residuals	and	influence	statistics	③
To	illustrate	how	residuals	and	influence	statistics	differ,	imagine	that	the	Mayor	of	London	at	the	turn	of	the	last	century	was	interested
in	how	drinking	affected	mortality.	London	is	divided	up	into	different	regions	called	boroughs,	and	so	he	might	measure	the	number	of
pubs	and	the	number	of	deaths	over	a	period	of	time	in	eight	of	his	boroughs.	The	data	are	in	a	file	called	pubs.sav.

The	scatterplot	of	these	data	(Figure	8.8)	reveals	that	without	the	last	case	there	is	a	perfect	linear	relationship	(the	dashed	straight
line).	However,	the	presence	of	the	last	case	(case	8)	changes	the	line	of	best	fit	dramatically	(although	this	line	is	still	a	significant	fit
to	the	data	–	do	the	regression	analysis	and	see	for	yourself).

What’s	interesting	about	these	data	is	when	we	look	at	the	residuals	and	influence	statistics.	The	standardized	residual	for	case	8	is
the	second	smallest:	this	outlier	produces	a	very	small	residual	(most	of	the	non-outliers	have	larger	residuals)	because	it	sits	very	close
to	the	line	that	has	been	fitted	to	the	data.	How	can	this	be?	Look	at	the	influence	statistics	below	and	you’ll	see	that	they’re	massive
for	case	8:	it	exerts	a	huge	influence	over	the	model.

FIGURE	8.8	With	non-parametric	tests	you	must	double-click	the	summary	table	within	the	viewer	window	to	open	up	the	model
viewer	window

As	always,	when	you	see	a	statistical	oddity	you	should	ask	what	was	happening	in	the	real	world.	The	last	data	point	represents	the
City	 of	 London,	 a	 tiny	 area	 of	 only	 1	 square	mile	 in	 the	 centre	 of	 London	where	 very	 few	 people	 lived	 but	 where	 thousands	 of
commuters	(even	then)	came	to	work	and	had	lunch	in	the	pubs.	Hence	the	pubs	didn’t	rely	on	the	resident	population	for	their	business
and	the	residents	didn’t	consume	all	of	their	beer.	Therefore,	there	was	a	massive	number	of	pubs.	This	illustrates	that	a	case	exerting	a
massive	influence	can	produce	a	small	residual	–	so	look	at	both	(I’m	very	grateful	to	David	Hitchin	for	this	example,	and	he	in	turn
got	it	from	Dr	Richard	Roberts.)

Independent	errors:	For	any	two	observations	the	residual	terms	should	be	uncorrelated	(i.e.,



independent).	This	eventuality	is	sometimes	described	as	a	lack	of	autocorrelation.	If	we	violate
the	assumption	of	independence	then	our	confidence	intervals	and	significance	tests	will	be
invalid.	However,	in	terms	of	the	model	parameters	themselves,	the	estimates	using	the	method	of
least	squares	will	still	be	valid	but	not	optimal	(see	Section	5.2.6).	This	assumption	can	be	tested
with	the	Durbin–Watson	test,	which	tests	for	serial	correlations	between	errors.	Specifically,	it
tests	whether	adjacent	residuals	are	correlated.	The	test	statistic	can	vary	between	0	and	4,	with	a
value	of	2	meaning	that	the	residuals	are	uncorrelated.	A	value	greater	than	2	indicates	a	negative
correlation	between	adjacent	residuals,	whereas	a	value	below	2	indicates	a	positive	correlation.
The	size	of	the	Durbin–Watson	statistic	depends	upon	the	number	of	predictors	in	the	model	and
the	number	of	observations.	For	accuracy,	you	should	look	up	the	exact	acceptable	values	in
Durbin	and	Watson’s	(1951)	original	paper.	As	a	very	conservative	rule	of	thumb,	values	less	than
1	or	greater	than	3	are	definitely	cause	for	concern;	however,	values	closer	to	2	may	still	be
problematic,	depending	on	your	sample	and	model.
Homoscedasticity	(see	Section	5.2.5):	At	each	level	of	the	predictor	variable(s),	the	variance	of	the
residual	terms	should	be	constant.	This	just	means	that	the	residuals	at	each	level	of	the
predictor(s)	should	have	the	same	variance	(homoscedasticity);	when	the	variances	are	very
unequal	there	is	said	to	be	heteroscedasticity.	Violating	this	assumption	invalidates	our	confidence
intervals	and	significance	tests.	However,	estimates	of	the	model	parameters	(b)	using	the	method
of	least	squares	are	still	valid	but	not	optimal.	This	problem	can	be	overcome	using	weighted	least
squares	regression	in	which	each	case	is	weighted	by	a	function	of	its	variance.
Normally	distributed	errors	(see	Section	5.2.4):	It	is	assumed	that	the	residuals	in	the	model	are
random,	normally	distributed	variables	with	a	mean	of	0.	This	assumption	simply	means	that	the
differences	between	the	model	and	the	observed	data	are	most	frequently	zero	or	very	close	to
zero,	and	that	differences	much	greater	than	zero	happen	only	occasionally.	Some	people	confuse
this	assumption	with	the	idea	that	predictors	have	to	be	normally	distributed.	In	fact,	predictors	do
not	need	to	be	normally	distributed.	In	small	samples	a	lack	of	normality	will	invalidate	confidence
intervals	and	significance	tests;	in	large	samples	it	will	not,	because	of	the	central	limit	theorem.	If
you	are	concerned	only	with	estimating	the	model	parameters	(and	not	significance	tests	and
confidence	intervals)	then	this	assumption	barely	matters.	If	you	bootstrap	confidence	intervals
then	you	really	can	ignore	this	assumption.

There	are	some	other	considerations	that	we	have	not	yet	discussed	(see	Berry,	1993):

Predictors	are	uncorrelated	with	‘external	variables’:	External	variables	are	variables	that	haven’t
been	included	in	the	regression	model	and	that	influence	the	outcome	variable.9	These	variables
can	be	thought	of	as	similar	to	the	‘third	variable’	that	was	discussed	with	reference	to	correlation.
This	assumption	means	that	there	should	be	no	external	variables	that	correlate	with	any	of	the
variables	included	in	the	regression	model.	Obviously,	if	external	variables	do	correlate	with	the
predictors,	then	the	conclusions	we	draw	from	the	model	become	unreliable	(because	other
variables	exist	that	can	predict	the	outcome	just	as	well).
Variable	types:	All	predictor	variables	must	be	quantitative	or	categorical	(with	two	categories),
and	the	outcome	variable	must	be	quantitative,	continuous	and	unbounded.	By	‘quantitative’	I
mean	that	they	should	be	measured	at	the	interval	level	and	by	‘unbounded’	I	mean	that	there
should	be	no	constraints	on	the	variability	of	the	outcome.	If	the	outcome	is	a	measure	ranging
from	1	to	10	yet	the	data	collected	vary	between	3	and	7,	then	these	data	are	constrained.
No	perfect	multicollinearity:	If	your	model	has	more	than	one	predictor	then	there	should	be	no
perfect	linear	relationship	between	two	or	more	of	the	predictors.	So,	the	predictor	variables	should



not	correlate	too	highly	(see	Section	8.5.3).
Non-zero	variance:	The	predictors	should	have	some	variation	in	value	(i.e.,	they	do	not	have
variances	of	0).	This	is	self-evident	really.

As	we	saw	in	Chapter	5,	violating	these	assumptions	has	implications	mainly	for	significance	tests
and	 confidence	 intervals;	 the	 estimates	 of	bs	 are	 not	 dependent	 on	 these	 assumptions	 (although	 least
squares	methods	will	be	optimal	when	the	assumptions	are	met).	However,	the	confidence	interval	for	a
b	 tells	us	 the	boundaries	within	which	 the	population	values	of	 that	b	 are	 likely	 to	 fall.	Therefore,	 if
confidence	 intervals	 are	 inaccurate	 (as	 they	 are	when	 these	 assumptions	 are	 broken)	 then	we	 cannot
accurately	 estimate	 the	 likely	 population	 value.	 This	 means	 we	 can’t	 generalize	 our	 model	 to	 the
population.	When	the	assumptions	are	met,	 then,	on	average	 the	regression	model	from	the	sample	 is
the	same	as	 the	population	model.	However,	you	should	be	clear	 that	even	when	the	assumptions	are
met,	it	is	possible	that	a	model	obtained	from	a	sample	may	not	be	the	same	as	the	population	model	–
but	the	likelihood	of	them	being	the	same	is	increased.

8.3.2.2.	Cross-validation	of	the	model	③

Even	if	we	can’t	be	confident	that	the	model	derived	from	our	sample	accurately	represents	the	entire
population,	we	can	assess	how	well	our	model	can	predict	the	outcome	in	a	different	sample.	Assessing
the	 accuracy	 of	 a	 model	 across	 different	 samples	 is	 known	 as	 cross-validation.	 If	 a	 model	 can	 be
generalized,	then	it	must	be	capable	of	accurately	predicting	the	same	outcome	variable	from	the	same
set	of	predictors	in	a	different	group	of	people.	If	the	model	is	applied	to	a	different	sample	and	there	is
a	 severe	 drop	 in	 its	 predictive	 power,	 then	 the	model	 clearly	 does	 not	 generalize.	 As	 a	 first	 rule	 of
thumb,	we	should	aim	to	collect	enough	data	to	obtain	a	reliable	regression	model	(see	the	next	section).
Once	we	have	a	regression	model	there	are	two	main	methods	of	cross-validation:

Adjusted	R2:	SPSS	computes	an	adjusted	R2.	Whereas	R2	tells	us	how	much	of	the	variance	in	Y	is
accounted	for	by	the	regression	model	from	our	sample,	the	adjusted	value	tells	us	how	much
variance	in	Y	would	be	accounted	for	if	the	model	had	been	derived	from	the	population	from
which	the	sample	was	taken.	Therefore,	the	adjusted	value	indicates	the	loss	of	predictive	power	or
shrinkage.	SPSS	derives	the	adjusted	R2	using	Wherry’s	equation.	This	equation	has	been
criticized	because	it	tells	us	nothing	about	how	well	the	regression	model	would	predict	scores	of	a
different	sample	of	data	from	the	same	population.	One	version	of	R2	that	does	tell	us	how	well	the
model	cross-validates	uses	Stein’s	formula	(see	Stevens,	2002).

In	Stein’s	equation,	R2	is	the	unadjusted	value,	n	is	the	number	of	participants	and	k	is	the	number
of	predictors	in	the	model.	For	the	more	mathematically	minded	of	you,	it	is	worth	using	this
equation	to	cross-validate	a	regression	model.
Data	splitting:	This	approach	involves	randomly	splitting	your	sample	data,	computing	a
regression	equation	on	both	halves	of	the	data	and	then	comparing	the	resulting	models.	When
using	stepwise	methods	(see	Section	8.5.1.3),	cross-validation	is	particularly	important;	you	should
run	the	stepwise	regression	on	a	random	selection	of	about	80%	of	your	cases.	Then	force	this
model	on	the	remaining	20%	of	the	data.	By	comparing	values	of	the	R2	and	b-values	in	the	two
samples	you	can	tell	how	well	the	original	model	generalizes	(see	Tabachnick	&	Fidell,	2012,	for
more	detail).



8.3.3.	Sample	size	in	regression	③

In	 the	previous	section	 I	 said	 that	 it’s	 important	 to	collect	enough	data	 to	obtain	a	 reliable	 regression
model.	Also,	larger	samples	enable	us	to	assume	that	our	bs	are	from	a	normally	distributed	sampling
distribution	because	of	the	central	limit	theorem	(Section	5.2.4.2).	Well,	how	much	is	enough?

You’ll	find	a	lot	of	rules	of	thumb	floating	about,	the	two	most	common	being	that	you	should	have
10	 cases	 of	 data	 for	 each	 predictor	 in	 the	 model,	 or	 15	 cases	 of	 data	 per	 predictor.	 So,	 with	 five
predictors,	you’d	need	50	or	75	cases	respectively	(depending	on	the	rule	you	use).	These	rules	are	very
pervasive	but	 they	oversimplify	the	issue.	In	fact,	 the	sample	size	required	will	depend	on	the	size	of
effect	that	we’re	trying	to	detect	(i.e.,	how	strong	the	relationship	is	that	we’re	trying	to	measure)	and
how	much	 power	we	want	 to	 detect	 these	 effects.	 The	 simplest	 rule	 of	 thumb	 is	 that	 the	 bigger	 the
sample	 size,	 the	better:	 the	estimate	of	R	 that	we	get	 from	 regression	 is	dependent	on	 the	number	of
predictors,	k,	and	the	sample	size,	N.	In	fact,	the	expected	R	for	random	data	is	k/(N	−	1)	and	so	with
small	sample	sizes	random	data	can	appear	to	show	a	strong	effect:	for	example,	with	six	predictors	and
21	 cases	 of	 data,	R	 =	 6/(21	−	 1)	 =.3	 (a	medium	 effect	 size	 by	Cohen’s	 criteria	 described	 in	 Section
7.2.2).	Obviously	for	random	data	we’d	want	the	expected	R	to	be	0	(no	effect)	and	for	this	to	be	true
we	 need	 large	 samples	 (to	 take	 the	 previous	 example,	 if	 we	 had	 100	 cases	 rather	 than	 21,	 then	 the
expected	R	would	be	a	more	acceptable	.06).

It’s	 all	 very	well	 knowing	 that	 larger	 is	 better,	 but	 researchers	 usually	 need	 some	more	 concrete
guidelines	 (much	 as	 we’d	 all	 love	 to	 collect	 1000	 cases	 of	 data,	 it	 isn’t	 always	 practical).	 As	 I’ve
mentioned	 before,	 the	 sample	 size	 required	 depends	 on	 the	 size	 of	 the	 effect	 (i.e.,	 how	 well	 our
predictors	predict	the	outcome),	how	much	statistical	power	we	want	to	detect	these	effects,	and	what
we’re	 testing	 (the	 significance	 of	 the	 b-values,	 or	 the	 significance	 of	 the	model	 overall).	 Figure	 8.9
shows	 the	 sample	 size	 required10	 to	 achieve	 a	 high	 level	 of	 power	 (I’ve	 taken	 Cohen’s	 (1988)
benchmark	of	.8)	to	test	that	the	model	is	significant	overall	(i.e.,	R2	is	not	equal	to	zero).	I’ve	varied
the	number	of	predictors	and	the	size	of	expected	effect:	I	used	R2	=	.02	(small),	.13	(medium)	and	.26
(large),	which	correspond	to	benchmarks	in	Cohen	(1988).	Broadly	speaking,	if	your	aim	is	to	test	the
overall	 fit	of	 the	model:	 (1)	 if	you	expect	 to	 find	a	 large	effect	 then	a	 sample	 size	of	77	will	 always
suffice	(with	up	to	20	predictors)	and	if	there	are	fewer	predictors	then	you	can	afford	to	have	a	smaller
sample;	(2)	if	you’re	expecting	a	medium	effect,	then	a	sample	size	of	160	will	always	suffice	(with	up
to	 20	 predictors),	 you	 should	 always	 have	 a	 sample	 size	 above	 55,	 and	with	 six	 or	 fewer	 predictors
you’ll	be	fine	with	a	sample	of	100;	and	(3)	if	you’re	expecting	a	small	effect	size	then	just	don’t	bother
unless	you	have	the	time	and	resources	to	collect	hundreds	of	cases	of	data.	Miles	and	Shevlin	(2001)
produce	some	more	detailed	graphs	that	are	worth	a	look,	but	the	take-home	message	is	that	if	you’re
looking	 for	medium	 to	 large	effects,	 sample	 sizes	don’t	need	 to	be	massive,	 regardless	of	how	many
predictors	you	have.



FIGURE	8.9
The	sample	size	required	to	test	the	overall	regression	model	depending	on	the	number	of	predictors	and
the	size	of	expected	effect,	R2	=	.02	(small),	.13	(medium)	and	.26	(large)

8.4.	Regression	using	SPSS:	One	Predictor	①

To	help	 clarify	what	we	have	 learnt	 so	 far,	we	will	 go	 through	 an	 example	 of	 a	 regression	with	 one
predictor	before	looking	in	a	bit	more	detail	at	models	with	several	predictors.	Earlier	on	I	asked	you	to
imagine	that	I	worked	for	a	record	company	and	that	my	boss	was	interested	in	predicting	album	sales
from	advertising.	There	are	some	data	for	this	example	in	the	file	Album	Sales.sav.	This	data	file	has
200	 rows,	 each	 one	 representing	 a	 different	 album.	 There	 are	 also	 several	 columns,	 one	 of	 which
contains	the	sales	(in	thousands)	of	each	album	in	the	week	after	release	(Sales)	and	one	containing	the
amount	 (in	 thousands	 of	 pounds)	 spent	 promoting	 the	 album	 before	 release	 (Adverts).	 The	 other
columns	 represent	 how	many	 times	 songs	 from	 the	 album	were	 played	 on	 radio	 in	 the	week	 before
release	(Airplay),	and	how	attractive	people	found	the	band	out	of	10	(Attract).	Ignore	these	last	two
variables	for	now;	we’ll	use	them	later.	Note	how	the	data	are	laid	out	(Figure	8.10):	each	variable	is	in
a	column	and	each	row	represents	a	different	album.	So,	the	first	album	had	£10,260	spent	advertising
it,	sold	330,000	copies,	received	43	plays	on	Radio	1	the	week	before	release,	and	was	made	by	a	band
that	the	majority	of	people	rated	as	gorgeous	sex	objects.



FIGURE	8.10
Data	layout	for	regression

8.4.1.	Regression:	the	general	procedure	①

Figure	 8.11	 shows	 the	 general	 process	 of	 conducting	 regression	 analysis.	 First,	 we	 should	 produce
scatterplots	 to	 get	 some	 idea	 of	whether	 the	 assumption	 of	 linearity	 is	met,	 and	 also	 to	 look	 for	 any
outliers	or	obvious	unusual	cases.	At	this	stage	we	might	transform	the	data	to	correct	problems.	Having
done	this	 initial	screen	for	problems,	we	fit	a	model	and	save	the	various	diagnostic	statistics	that	we
discussed	in	Section	8.3.	If	we	want	to	generalize	our	model	beyond	the	sample,	or	we	are	interested	in
interpreting	 significance	 tests	 and	 confidence	 intervals,	 then	we	 examine	 these	 residuals	 to	 check	 for
homoscedasticity,	 normality,	 independence	 and	 linearity	 (although	 this	 will	 likely	 be	 fine	 given	 our
earlier	screening).	If	we	find	problems	then	we	take	corrective	action	and	re-estimate	the	model.	This
process	might	seem	complex,	but	it’s	not	as	bad	as	it	seems.	Also,	it’s	probably	wise	to	use	bootstrapped
confidence	intervals	when	we	first	estimate	the	model	because	then	we	can	basically	forget	about	things
like	normality.
	

SELF-TEST	Produce	a	scatterplot	of	sales	(y-axis)	against	advertising	budget	(x-axis).
Include	the	regression	line.

The	pattern	of	 the	data	 is	shown	in	Figure	8.12,	and	 it	 should	be	clear	 that	a	positive	relationship



exists:	so,	the	more	money	spent	advertising	the	album,	the	more	it	is	likely	to	sell.	Of	course	there	are
some	albums	that	sell	well	regardless	of	advertising	(top	left	of	scatterplot),	but	there	are	none	that	sell
badly	when	advertising	levels	are	high	(bottom	right	of	scatterplot).	The	scatterplot	also	shows	the	line
of	best	fit	for	these	data:	bearing	in	mind	that	the	mean	would	be	represented	by	a	flat	line	at	around	the
200,000	sales	mark,	the	regression	line	is	noticeably	different.

FIGURE	8.11
The	process	of	fitting	a	regression	model.

8.4.2.	Running	a	simple	regression	using	SPSS	①

To	 do	 the	 analysis	 you	 need	 to	 access	 the	 main	 dialog	 box	 by	 selecting	 	
.	 Figure	 8.13	 shows	 the	 resulting	 dialog	 box.	 There	 is	 a	 space	 labelled

Dependent	 in	which	you	 should	place	 the	outcome	variable	 (in	 this	 example	Sales).	 So,	 select	Sales
from	 the	 list	 on	 the	 left-hand	 side,	 and	 transfer	 it	 by	dragging	 it	 or	 clicking	on	 .	There	 is	 another
space	labelled	Independent(s)	in	which	any	predictor	variable	should	be	placed.	In	simple	regression	we
use	only	one	predictor	(in	this	example,	Adverts)	and	so	you	should	select	Adverts	 from	the	list	and
click	on	 	to	transfer	it	to	the	list	of	predictors.	There	are	a	variety	of	options	available,	but	these	will
be	 explored	within	 the	 context	 of	multiple	 regression.	However,	we	 can	get	 bootstrapped	 confidence
intervals	 for	 the	 regression	coefficients	 by	 clicking	on	 	 (see	Section	5.4.3).	 Select	 to	 activate



bootstrapping,	 and	 to	 get	 a	 95%	confidence	 interval	 click	 .	Click	 on	 	 in	 the
main	dialog	box	to	run	the	basic	analysis.

FIGURE	8.12
Scatterplot	showing	the	relationship	between	album	sales	and	the	amount	spent	promoting	the	album

FIGURE	8.13
Main	dialog	box	for	regression



8.4.3.	Interpreting	a	simple	regression	①

8.4.3.1.	Overall	fit	of	the	model	①

The	first	table	provided	by	SPSS	is	a	summary	of	the	model	(Output	8.1).	This	summary	table	provides
the	value	of	R	and	R2	 for	 the	model	 that	has	been	derived.	For	 these	data,	R	has	a	value	of	 .578	and
because	there	is	only	one	predictor,	this	value	represents	the	simple	correlation	between	advertising	and
album	sales	(you	can	confirm	this	by	running	a	correlation	using	what	you	were	taught	in	Chapter	6).
The	 value	 of	 R2	 is	 .335,	 which	 tells	 us	 that	 advertising	 expenditure	 can	 account	 for	 33.5%	 of	 the
variation	in	album	sales.	 In	other	words,	 if	we	are	 trying	to	explain	why	some	albums	sell	more	 than
others,	we	can	look	at	the	variation	in	sales	of	different	albums.	There	might	be	many	factors	that	can
explain	 this	 variation,	 but	 our	 model,	 which	 includes	 only	 advertising	 expenditure,	 can	 explain
approximately	33%	of	it.	This	means	that	66%	of	the	variation	in	album	sales	cannot	be	explained	by
advertising	alone.	Therefore,	there	must	be	other	variables	that	have	an	influence	also.

The	next	part	of	the	output	(Output	8.2)	reports	an	analysis	of	variance	(ANOVA	–	see	Chapter	11).
The	 summary	 table	 shows	 the	 various	 sums	 of	 squares	 described	 in	 Figure	 8.5	 and	 the	 degrees	 of
freedom	associated	with	each.	From	these	two	values,	the	average	sums	of	squares	(the	mean	squares)
can	 be	 calculated	 by	 dividing	 the	 sums	 of	 squares	 by	 the	 associated	 degrees	 of	 freedom.	 The	most
important	part	of	 the	 table	 is	 the	F-ratio,	which	 is	calculated	using	equation	(8.9),	and	 the	associated
significance	value	of	that	F-ratio.	For	these	data,	F	 is	99.59,	which	is	significant	at	p	<	.001	(because
the	value	in	the	column	labelled	Sig.	is	less	than	.001).	This	result	tells	us	that	there	is	less	than	a	0.1%
chance	 that	 an	F-ratio	 this	 large	 would	 happen	 if	 the	 null	 hypothesis	 were	 true.	 Therefore,	 we	 can
conclude	 that	our	 regression	model	 results	 in	significantly	better	prediction	of	album	sales	 than	 if	we
used	 the	 mean	 value	 of	 album	 sales.	 In	 short,	 the	 regression	 model	 overall	 predicts	 album	 sales
significantly	well.

OUTPUT	8.1

OUTPUT	8.2



8.4.3.2.	Model	parameters	①

The	ANOVA	tells	us	whether	the	model,	overall,	results	in	a	significantly	good	degree	of	prediction	of
the	 outcome	 variable.	 However,	 the	 ANOVA	 doesn’t	 tell	 us	 about	 the	 individual	 contribution	 of
variables	in	the	model	(although	in	this	simple	case	there	is	only	one	variable	in	the	model	and	so	we
can	infer	that	this	variable	is	a	good	predictor).	The	table	in	Output	8.3	provides	estimates	of	the	model
parameter	(the	beta	values)	and	the	significance	of	these	values.	We	saw	in	equation	(8.1)	that	b0	was
the	Y	intercept,	and	this	value	is	the	value	B	(in	the	SPSS	output)	for	the	constant.	So,	from	the	table,	we
can	 say	 that	 b0	 is	 134.14,	 and	 this	 can	 be	 interpreted	 as	 meaning	 that	 when	 no	 money	 is	 spent	 on
advertising	(when	X	=	0),	the	model	predicts	that	134,140	albums	will	be	sold	(remember	that	our	unit
of	measurement	was	thousands	of	albums).	We	can	also	read	off	the	value	of	b1	from	the	table,	and	this
value	represents	the	gradient	of	the	regression	line.	It	is	0.096.	Although	this	value	is	the	slope	of	the
regression	line,	it	is	more	useful	to	think	of	it	as	representing	the	change	in	the	outcome	associated	with
a	 unit	 change	 in	 the	 predictor.	 Therefore,	 if	 our	 predictor	 variable	 is	 increased	 by	 one	 unit	 (if	 the
advertising	budget	is	increased	by	1),	then	our	model	predicts	that	0.096	extra	albums	will	be	sold.	Our
units	of	measurement	were	thousands	of	pounds	and	thousands	of	albums	sold,	so	we	can	say	that	for	an
increase	in	advertising	of	£1000	the	model	predicts	96	(0.096	×	1000	=	96)	extra	album	sales.	As	you
might	imagine,	this	investment	is	pretty	bad	for	the	album	company:	it	invests	£1000	and	gets	only	96
extra	sales!	Fortunately,	as	we	already	know,	advertising	accounts	for	only	one-third	of	album	sales.

We	 saw	earlier	 that,	 in	general,	 values	of	 the	 regression	 coefficient	b	 represent	 the	 change	 in	 the
outcome	resulting	from	a	unit	change	in	the	predictor	and	that	if	a	predictor	has	a	significant	impact	on
our	ability	to	predict	the	outcome	then	this	b	should	be	different	from	0	(and	big	relative	to	its	standard
error).	We	also	saw	that	 the	 t-test	 tells	us	whether	 the	b-value	 is	different	 from	0.	SPSS	provides	 the
exact	probability	that	the	observed	value	of	t	would	occur	if	the	value	of	b	in	the	population	were	zero.
If	this	observed	significance	is	less	than	.05,	then	the	result	reflects	a	genuine	effect	(see	Chapter	2).	For
both	 ts,	 the	 probabilities	 are	 given	 as	 .000	 (zero	 to	 3	 decimal	 places)	 and	 so	 we	 can	 say	 that	 the
probability	of	these	t	values	(or	larger)	occurring	if	the	values	of	b	in	the	population	were	zero	is	less
than	.001.	Therefore,	the	bs	are	significantly	different	from	0.	In	the	case	of	the	b	for	advertising	budget
this	 result	means	 that	 the	advertising	budget	makes	a	significant	contribution	(p	<	 .001)	 to	predicting
album	sales.

The	bootstrap	confidence	 interval	 tells	us	 that	 the	population	value	of	b	 for	advertising	budget	 is
likely	to	fall	between	.08	and	.11,	and	because	this	interval	doesn’t	include	zero	we	would	conclude	that
there	is	a	genuine	positive	relationship	between	advertising	budget	and	album	sales	in	the	population.
Also,	the	significance	associated	with	this	confidence	interval	is	p	=	.001,	which	is	highly	significant.
Also,	note	 that	 the	bootstrap	process	 involves	re-estimating	 the	standard	error	(it	changes	from	.01	 in
the	original	 table	 to	 a	 bootstrap	 estimate	 of	 .009).	This	 is	 a	 very	 small	 change.	For	 the	 constant,	 the
standard	error	is	7.537	compared	to	the	bootstrap	estimate	of	8.214,	which	is	a	difference	of	0.677.	The



bootstrap	confidence	intervals	and	significance	values	are	useful	to	report	and	interpret	because	they	do
not	rely	on	assumptions	of	normality	or	homoscedasticity.

OUTPUT	8.3

	

SELF-TEST	How	is	the	t	in	Output	8.3	calculated?	Use	the	values	in	the	table	to	see	if	you
can	get	the	same	value	as	SPSS.

8.4.4.	Using	the	model	①

So	far,	we	have	discovered	that	we	have	a	useful	model,	one	that	significantly	improves	our	ability	to
predict	album	sales.	However,	the	next	stage	is	often	to	use	that	model	to	make	some	predictions.	The
first	stage	 is	 to	define	 the	model	by	replacing	 the	b-values	 in	equation	(8.1)	with	 the	values	 from	the
output.	In	addition,	we	can	replace	the	X	and	Y	with	the	variable	names	so	that	the	model	becomes:

It	 is	now	possible	 to	make	a	prediction	about	album	sales,	by	replacing	the	advertising	budget	with	a
value	of	 interest.	For	example,	 imagine	a	recording	company	executive	wanted	 to	spend	£100,000	on
advertising	 a	 new	 album.	 Remembering	 that	 our	 units	 are	 already	 in	 thousands	 of	 pounds,	 we	 can
simply	replace	the	advertising	budget	with	100.	He	would	discover	that	album	sales	should	be	around
144,000	for	the	first	week	of	sales:



CRAMMING	SAM’S	TIPS 	Simple	regression
Simple	regression	is	a	way	of	predicting	values	of	one	variable	from	another.
We	do	this	by	fitting	a	statistical	model	to	the	data	in	the	form	of	a	straight	line.
This	line	is	the	line	that	best	summarizes	the	pattern	of	the	data.
We	have	to	assess	how	well	the	line	fits	the	data	using:

R2,	which	tells	us	how	much	variance	is	explained	by	the	model	compared	to	how	much	variance	there	is	to	explain	in	the
first	place.	It	is	the	proportion	of	variance	in	the	outcome	variable	that	is	shared	by	the	predictor	variable.
F,	which	tells	us	how	much	variability	the	model	can	explain	relative	to	how	much	it	can’t	explain	(i.e.,	it’s	the	ratio	of
how	good	the	model	is	compared	to	how	bad	it	is).
the	b-value,	which	tells	us	the	gradient	of	the	regression	line	and	the	strength	of	the	relationship	between	a	predictor	and
the	outcome	variable.	If	it	is	significant	(Sig.	<	.05	in	the	SPSS	table)	then	the	predictor	variable	significantly	predicts	the
outcome	variable.

	

SELF-TEST	How	many	albums	would	be	sold	if	we	spent	£666,000	on	advertising	the	latest
CD	by	black	metal	band	Abgott?

8.5.	Multiple	regression	②

Imagine	that	the	record	company	executive	was	now	interested	in	extending	the	model	of	albums	sales
to	 incorporate	 other	 variables.	Before	 an	 album	 is	 released,	 the	 executive	 notes	 the	 amount	 spent	 on
advertising,	 the	 number	 of	 times	 songs	 from	 the	 album	 are	 played	 on	 radio	 the	week	 before	 release
(Airplay),	 and	 the	 attractiveness	 of	 the	 band	 (Attract).	He	 does	 this	 for	 200	 different	 albums	 (each
made	 by	 a	 different	 band).	 Attractiveness	 was	 measured	 by	 asking	 a	 random	 sample	 of	 the	 target
audience	 to	 rate	 the	 attractiveness	 of	 each	 band	 on	 a	 scale	 from	 0	 (hideous	 potato-heads)	 to	 10
(gorgeous	 sex	 objects).	 The	 mode	 attractiveness	 given	 by	 the	 sample	 was	 used	 in	 the	 regression
(because	he	was	interested	in	what	the	majority	of	people	thought,	rather	than	the	average	of	people’s
opinions).

When	we	want	 to	build	a	model	with	several	predictors,	everything	we	have	discussed	so	far	still
applies.	 It	 is	 important	 to	 remember	 that	SPSS	may	appear	 to	be	very	clever,	but	 it	 is	not.	SPSS	will
happily	generate	output	based	on	any	garbage	you	decide	to	feed	into	it,	 it	will	not	judge	you	or	give
any	 indication	 of	 whether	 the	 model	 is	 valid	 or	 generalizable.	 SPSS	 will	 provide	 the	 information
necessary	 to	 assess	 these	 things,	 but	we	need	 to	 rely	on	our	brains	 to	 evaluate	 the	model	–	which	 is
slightly	worrying	(especially	if	your	brain	is	as	small	as	mine).

The	first	thing	to	think	about	is	what	predictor	variables	to	enter	into	the	model.	A	great	deal	of	care



should	be	taken	in	selecting	predictors	for	a	model	because	the	estimates	of	the	regression	coefficients
depend	upon	the	variables	in	the	model.	The	predictors	included	and	the	way	in	which	they	are	entered
into	the	model	can	have	a	great	impact.	Do	not	select	hundreds	of	random	predictors,	bung	them	all	into
a	regression	analysis	and	hope	for	the	best.	You	should	select	predictors	based	on	a	sound	theoretical
rationale	or	well-conducted	past	research	that	has	demonstrated	 their	 importance.11	 In	our	example,	 it
seems	logical	that	the	band’s	image	and	radio	play	ought	to	affect	sales,	so	these	are	sensible	predictors.
It	would	not	be	sensible	to	measure	how	much	the	album	cost	to	make,	because	this	won’t	affect	sales
directly:	you	would	just	be	adding	noise	to	the	model.	If	predictors	are	being	added	that	have	never	been
looked	at	before	(in	your	particular	context)	then	select	these	new	variables	based	on	their	substantive
theoretical	importance.

8.5.1.	Methods	of	regression	②

In	 addition	 to	 the	 problem	 of	 selecting	 predictors,	 there	 are	 several	 ways	 in	which	 variables	 can	 be
entered	into	a	model.	When	predictors	are	all	completely	uncorrelated,	 the	order	of	variable	entry	has
very	little	effect	on	the	parameters	calculated;	however,	we	rarely	have	uncorrelated	predictors	and	so
the	method	of	predictor	selection	is	crucial.

8.5.1.1.	Hierarchical	(blockwise	entry)	②

In	hierarchical	 regression	 predictors	 are	 selected	 based	 on	 past	work	 and	 the	 researcher	 decides	 in
which	 order	 to	 enter	 the	 predictors	 into	 the	model.	As	 a	 general	 rule,	 known	 predictors	 (from	 other
research)	should	be	entered	into	the	model	first	in	order	of	their	importance	in	predicting	the	outcome.
After	known	predictors	have	been	entered,	the	experimenter	can	add	any	new	predictors	into	the	model.
New	predictors	can	be	entered	either	all	in	one	go,	in	a	stepwise	manner,	or	hierarchically	(such	that	the
new	predictor	suspected	to	be	the	most	important	is	entered	first).

8.5.1.2.	Forced	entry	②

Forced	entry	(or	Enter	as	it	 is	known	in	SPSS)	is	a	method	in	which	all	predictors	are	forced	into	the
model	simultaneously.	Like	hierarchical,	this	method	relies	on	good	theoretical	reasons	for	including	the
chosen	predictors,	but	unlike	hierarchical	the	experimenter	makes	no	decision	about	the	order	in	which
variables	 are	 entered.	 Some	 researchers	 believe	 that	 this	 method	 is	 the	 only	 appropriate	method	 for
theory	 testing	 (Studenmund	&	Cassidy,	1987)	because	 stepwise	 techniques	are	 influenced	by	 random
variation	in	the	data	and	so	seldom	give	replicable	results	if	the	model	is	retested.

8.5.1.3.	Stepwise	methods	②

Stepwise	 regressions	 are	 generally	 frowned	 upon	 by	 statisticians.	 Nevertheless,	 SPSS	makes	 it	 very
easy	to	do	and	actively	encourages	it	in	the	Automatic	Linear	Modelling	process	(probably	because	this
function	 is	 aimed	 at	 people	 who	 don’t	 know	 better)	 –	 see	 Oditi’s	 Lantern.	 I’m	 assuming	 that	 you



wouldn’t	 wade	 through	 1000	 pages	 of	 my	 drivel	 unless	 you	 wanted	 to	 know	 better,	 so	 we’ll	 give
stepwise	a	wide	birth.	However,	you	probably	ought	to	know	what	it	does	so	you	can	understand	why	to
avoid	it.

In	stepwise	regressions	decisions	about	the	order	in	which	predictors	are	entered	into	the	model	are
based	 on	 a	 purely	 mathematical	 criterion.	 In	 the	 forward	 method,	 an	 initial	 model	 is	 defined	 that
contains	only	the	constant	(b0).	The	computer	then	searches	for	the	predictor	(out	of	the	ones	available)
that	 best	 predicts	 the	 outcome	 variable	 –	 it	 does	 this	 by	 selecting	 the	 predictor	 that	 has	 the	 highest
simple	correlation	with	the	outcome.	If	this	predictor	significantly	improves	the	ability	of	the	model	to
predict	the	outcome,	then	this	predictor	is	retained	in	the	model	and	the	computer	searches	for	a	second
predictor.	 The	 criterion	 used	 for	 selecting	 this	 second	 predictor	 is	 that	 it	 is	 the	 variable	 that	 has	 the
largest	semi-partial	correlation	with	the	outcome.	In	plain	English,	imagine	that	the	first	predictor	can
explain	 40%	 of	 the	 variation	 in	 the	 outcome	 variable;	 then	 there	 is	 still	 60%	 left	 unexplained.	 The
computer	 searches	 for	 the	predictor	 that	 can	 explain	 the	biggest	 part	 of	 the	 remaining	60%	 (it	 is	 not
interested	in	the	40%	that	is	already	explained).	As	such,	this	semi-partial	correlation	gives	a	measure	of
how	much	 ‘new	variance’	 in	 the	outcome	can	be	explained	by	each	 remaining	predictor	 (see	Section
7.5).	The	predictor	 that	 accounts	 for	 the	most	new	variance	 is	 added	 to	 the	model	 and,	 if	 it	makes	 a
significant	 contribution	 to	 the	 predictive	 power	 of	 the	model,	 it	 is	 retained	 and	 another	 predictor	 is
considered.

The	stepwise	method	in	SPSS	is	the	same	as	the	forward	method,	except	that	each	time	a	predictor	is
added	 to	 the	 equation,	 a	 removal	 test	 is	 made	 of	 the	 least	 useful	 predictor.	 As	 such,	 the	 regression
equation	 is	being	reassessed	constantly	 to	see	whether	any	redundant	predictors	can	be	removed.	The
backward	 method	 is	 the	 opposite	 of	 the	 forward	method	 in	 that	 the	 computer	 begins	 by	 placing	 all
predictors	in	the	model	and	then	calculating	the	contribution	of	each	one	by	looking	at	the	significance
value	of	 the	 t-test	 for	 each	predictor.	This	 significance	value	 is	 compared	against	 a	 removal	 criterion
(which	can	be	either	an	absolute	value	of	the	test	statistic	or	a	probability	value	for	that	test	statistic).	If
a	predictor	meets	the	removal	criterion	(i.e.,	if	it	is	not	making	a	statistically	significant	contribution	to
how	well	the	model	predicts	the	outcome	variable)	it	is	removed	from	the	model	and	the	model	is	re-
estimated	for	the	remaining	predictors.	The	contribution	of	the	remaining	predictors	is	then	reassessed.

ODITI’S	LANTERN

Automatic	linear	modelling

‘I,	Oditi,	come	with	a	warning.	Your	desparation	to	bring	me	answers	to	numerical	truths	so	as	to	gain	a	privileged	place	within	my
heart	may	 lead	 you	 into	 the	 temptation	 that	 is	 SPSS’s	 ‘automatic	 linear	modelling’.	Automatic	 linear	modelling	 promises	 answers
without	thought,	and	like	a	cat	who	is	promised	a	fresh	salmon,	you	will	drool	and	purr	in	anticipation.	If	you	want	to	find	out	more
then	stare	into	my	lantern,	but	be	warned,	sometimes	what	looks	like	a	juicy	salmon	is	a	rotting	pilchard	in	disguise.’

8.5.1.4.	Choosing	a	method	②



SPSS	 allows	 you	 to	 opt	 for	 any	 one	 of	 the	 methods	 described,	 and	 it	 is	 important	 to	 select	 an
appropriate	 one.	 The	 short	 answer	 to	 which	 method	 to	 select	 is	 ‘not	 stepwise’,	 because	 stepwise
methods	rely	on	the	computer	selecting	variables	based	upon	mathematical	criteria.	Many	writers	argue
that	 this	 takes	 many	 important	 methodological	 decisions	 out	 of	 the	 hands	 of	 the	 researcher.	What’s
more,	 the	 models	 derived	 by	 computer	 often	 take	 advantage	 of	 random	 sampling	 variation	 and	 so
decisions	about	which	variables	should	be	included	will	be	based	upon	slight	differences	in	their	semi-
partial	 correlation.	 However,	 these	 slight	 statistical	 differences	 may	 contrast	 dramatically	 with	 the
theoretical	 importance	 of	 a	 predictor	 to	 the	model.	There	 is	 also	 the	 danger	 of	 overfitting	 the	model
(having	 too	 many	 variables	 in	 the	 model	 that	 essentially	 make	 little	 contribution	 to	 predicting	 the
outcome)	and	underfitting	it	(leaving	out	important	predictors).

The	main	problem	with	stepwise	methods	is	that	they	assess	the	fit	of	a	variable	based	on	the	other
variables	 in	 the	model.	 Jeremy	Miles	 (who	has	worked	with	me	on	other	books)	uses	 the	analogy	of
getting	dressed	to	describe	this	problem.	You	wake	up	in	the	morning	and	you	need	to	get	dressed:	on
your	 dressing	 table	 (or	 floor,	 if	 you’re	 me)	 you	 have	 underwear,	 some	 jeans,	 a	 T-shirt	 and	 jacket.
Imagine	 these	 items	are	predictor	variables.	 It’s	a	cold	day	and	you’re	 trying	 to	be	warm.	A	stepwise
method	will	put	your	trousers	on	first	because	they	fit	your	goal	best.	It	then	looks	around	and	tries	the
other	clothes	(variables).	It	tries	to	get	you	to	put	on	your	underwear	but	they	won’t	fit	over	your	jeans,
so	 it	 decides	 they	 are	 ‘a	 poor	 fit’	 and	 discards	 them.	 You	 end	 up	 leaving	 the	 house	 without	 your
underwear.	Later	 on	 during	 a	 university	 seminar	 you	 stand	 up	 and	 your	 trousers	 fall	 down	 revealing
your	genitals	to	the	room.	It’s	a	mess.	The	problem	is	that	the	underwear	was	a	poor	fit	only	because
when	you	tried	to	put	them	on	you	were	already	wearing	jeans.	In	stepwise	methods,	variables	might	be
considered	bad	predictors	only	because	of	what	has	already	been	put	in	the	model.

For	these	reasons,	stepwise	methods	are	best	avoided	except	for	exploratory	model	building.	If	you
do	decide	to	use	a	stepwise	method,	then	let	the	statistical	blood	be	on	your	hands,	not	mine.	Use	the
backward	method	rather	than	the	forward	method	to	minimize	suppressor	effects,	which	occur	when	a
predictor	has	a	significant	effect	but	only	when	another	variable	is	held	constant.	Forward	selection	is
more	likely	than	backward	elimination	to	exclude	predictors	involved	in	suppressor	effects.	As	such,	the
forward	method	runs	a	higher	risk	of	making	a	Type	II	error	(i.e.,	missing	a	predictor	that	does	in	fact
predict	the	outcome).	It	is	also	advisable	to	cross-validate	your	model	by	splitting	the	data	(see	Section
8.3.2.2).

8.5.2.	Comparing	models	②

Hierarchical	 and	 (although	 obviously	 you’d	 never	 use	 them)	 stepwise	 methods	 involve	 adding



predictors	to	the	model	in	stages	and	it	is,	of	course,	useful	to	know	whether	these	additions	improve	the
model.	 Given	 that	 larger	 values	 of	R2	 indicate	 better	 fit,	 a	 simple	 way	 to	 see	 whether	 a	 model	 has
improved	as	a	result	of	adding	predictors	to	it	would	be	to	see	whether	R2	for	the	new	model	is	bigger
than	 for	 the	 old	model.	 In	 fact,	 it	 will	 always	 get	 bigger	 if	 we	 add	 predictors,	 so	 the	 issue	 is	more
whether	it	gets	significantly	bigger.	We	can	assess	the	significance	of	the	change	in	R2	using	equation
(8.10),	but	because	we’re	looking	at	the	change	in	models	we	use	the	change	in	R2	(R2change)	and	the	R2

of	the	newer	model	(R2new).	We	also	use	the	change	in	the	number	of	predictors	(kchange)	as	well	as	the
number	of	predictors	in	the	new	model	(knew).	The	equation	is	thus:

We	can	compare	models	using	this	F-ratio.	The	problem	with	R2	is	that	when	you	add	more	variables	to
the	model,	 it	will	always	go	up.	So,	 if	you	are	deciding	which	of	 two	models	 fits	 the	data	better,	 the
model	 with	 more	 predictor	 variables	 in	 will	 always	 fit	 better.	 The	 Akaike	 information	 criterion
(AIC)12	is	a	measure	of	fit	which	penalizes	the	model	for	having	more	variables.	If	the	AIC	is	bigger,
the	fit	is	worse;	if	the	AIC	is	smaller,	the	fit	is	better.	If	you	use	the	Automated	Linear	Model	function	in
SPSS,	then	you	can	use	the	AIC	to	select	models	rather	than	the	change	in	R2.	The	AIC	doesn’t	mean
anything	on	its	own:	you	cannot	say	that	a	value	of	the	AIC	of	10	is	small,	or	that	a	value	for	the	AIC	of
1000	is	large.	The	only	thing	you	do	with	the	AIC	is	compare	it	to	other	models	with	the	same	outcome
variable:	if	it’s	getting	smaller	then	the	fit	of	your	model	is	improving.

8.5.3.	Multicollinearity	②

A	 final	 additional	 concern	 when	 we	 want	 to	 include	 more	 than	 one	 predictor	 in	 our	 model	 is
multicollinearity,	 which	 exists	 when	 there	 is	 a	 strong	 correlation	 between	 two	 or	 more	 predictors.
Perfect	collinearity	exists	when	at	least	one	predictor	is	a	perfect	linear	combination	of	the	others	(the
simplest	example	being	two	predictors	that	are	perfectly	correlated	–	they	have	a	correlation	coefficient
of	1).	If	there	is	perfect	collinearity	between	predictors	it	becomes	impossible	to	obtain	unique	estimates
of	the	regression	coefficients	because	there	are	an	infinite	number	of	combinations	of	coefficients	that
would	work	equally	well.	Put	simply,	 if	we	have	two	predictors	 that	are	perfectly	correlated,	 then	the
values	of	b	 for	each	variable	are	 interchangeable.	The	good	news	is	 that	perfect	collinearity	 is	rare	 in
real-life	data.	The	bad	news	is	that	less	than	perfect	collinearity	is	virtually	unavoidable.	Low	levels	of
collinearity	 pose	 little	 threat	 to	 the	 model	 estimates,	 but	 as	 collinearity	 increases	 there	 are	 three
problems	that	arise:

Untrustworthy	bs:	As	collinearity	increases	so	do	the	standard	errors	of	the	b	coefficients.	If	you
think	back	to	what	the	standard	error	represents,	then	big	standard	errors	for	b	coefficients	means
that	these	bs	are	more	variable	across	samples.	Therefore,	the	b	coefficient	in	our	sample	is	less
likely	to	represent	the	population.	Crudely	put,	multicollinearity	means	that	the	b-values	are	less
trustworthy.	Don’t	lend	them	money	and	don’t	let	them	go	out	to	dinner	with	your	boy-	or
girlfriend.	Of	course,	if	the	bs	are	variable	from	sample	to	sample	then	the	resulting	predictor
equations	will	be	unstable	across	samples	too.



It	limits	the	size	of	R:	Remember	that	R	is	a	measure	of	the	correlation	between	the	predicted
values	of	the	outcome	and	the	observed	values	and	that	R2	indicates	the	variance	in	the	outcome
for	which	the	model	accounts.	Imagine	a	situation	in	which	a	single	variable	predicts	the	outcome
variable	fairly	successfully	(e.g.,	R	=	.80)	and	a	second	predictor	variable	is	then	added	to	the
model.	This	second	variable	might	account	for	a	lot	of	the	variance	in	the	outcome	(which	is	why	it
is	included	in	the	model),	but	the	variance	it	accounts	for	is	the	same	variance	accounted	for	by	the
first	variable.	In	other	words,	once	the	variance	accounted	for	by	the	first	predictor	has	been
removed,	the	second	predictor	accounts	for	very	little	of	the	remaining	variance	(the	second
variable	accounts	for	very	little	unique	variance).	Hence,	the	overall	variance	in	the	outcome
accounted	for	by	the	two	predictors	is	little	more	than	when	only	one	predictor	is	used	(so	R	might
increase	from	.80	to	.82).	This	idea	is	connected	to	the	notion	of	partial	correlation	that	was
explained	in	Chapter	7.	If,	however,	the	two	predictors	are	completely	uncorrelated,	then	the
second	predictor	is	likely	to	account	for	different	variance	in	the	outcome	than	that	accounted	for
by	the	first	predictor.	So,	although	in	itself	the	second	predictor	might	account	for	only	a	little	of
the	variance	in	the	outcome,	the	variance	it	does	account	for	is	different	to	that	of	the	other
predictor	(and	so	when	both	predictors	are	included,	R	is	substantially	larger,	say	.95).	Therefore,
having	uncorrelated	predictors	is	beneficial.
Importance	of	predictors:	Multicollinearity	between	predictors	makes	it	difficult	to	assess	the
individual	importance	of	a	predictor.	If	the	predictors	are	highly	correlated,	and	each	accounts	for
similar	variance	in	the	outcome,	then	how	can	we	know	which	of	the	two	variables	is	important?
Quite	simply,	we	can’t	–	the	model	could	include	either	one,	interchangeably.

One	way	of	identifying	multicollinearity	is	to	scan	a	correlation	matrix	of	the	predictor	variables	and
see	if	any	correlate	very	highly	(by	‘very	highly’	I	mean	correlations	of	above	.80	or	.90).	This	is	a	good
‘ball	park’	method,	but	misses	more	subtle	forms	of	multicollinearity.	Luckily,	SPSS	produces	various
collinearity	diagnostics,	one	of	which	is	the	variance	inflation	factor	(VIF).	The	VIF	indicates	whether
a	 predictor	 has	 a	 strong	 linear	 relationship	 with	 the	 other	 predictor(s).	 Related	 to	 the	 VIF	 is	 the
tolerance	statistic,	which	is	its	reciprocal	(1/VIF).	Although	there	are	no	hard	and	fast	rules	about	what
value	of	the	VIF	should	cause	concern,	there	are	some	general	guidelines:

If	the	largest	VIF	is	greater	than	10	then	there	is	cause	for	concern	(Bowerman	&	O’Connell,	1990;
Myers,	1990).
If	the	average	VIF	is	substantially	greater	than	1	then	the	regression	may	be	biased	(Bowerman	&
O’Connell,	1990).
Tolerance	below	0.1	indicates	a	serious	problem.
Tolerance	below	0.2	indicates	a	potential	problem	(Menard,	1995).

Other	measures	that	are	useful	in	discovering	whether	predictors	are	dependent	are	the	eigenvalues
of	 the	 scaled,	 uncentred	 cross-products	 matrix,	 the	 condition	 indexes	 and	 the	 variance	 proportions.
These	statistics	are	extremely	complex	and	will	be	covered	as	part	of	the	interpretation	of	SPSS	output
(see	Section	8.7.5).	 If	none	of	 this	has	made	any	sense	 then	have	a	 look	at	Hutcheson	and	Sofroniou
(1999,	pp.	78–85)	who	give	a	really	clear	explanation	of	multicollinearity.

8.6.	Regression	with	several	predictors	using	SPSS	②



Remember	that	for	any	regression	we	need	to	follow	the	general	procedure	outlined	in	Figure	8.11.	So,
first	 we	 might	 look	 at	 some	 scatterplots	 of	 the	 relationships	 between	 the	 outcome	 variable	 and	 the
predictors.	The	 resulting	 scatterplots	 for	 our	 album	 sales	 data	 are	 shown	 in	 Figure	8.14.	We	 need	 to
focus	on	the	relationship	between	predictors	and	the	outcome	(album	sales),	and	in	Figure	8.14	I	have
shaded	out	the	other	scatterplots	so	we	can	focus	on	the	three	related	to	album	sales.13	We	can	see	that
although	the	data	are	messy	in	places,	the	three	predictors	have	reasonably	linear	relationships	with	the
outcome	(album	sales)	and	there	are	no	obvious	outliers.

FIGURE	8.14
Matrix	scatterplot	of	the	relationships	between	advertising	budget,	airplay,	and	attractiveness	of	the
band	and	album	sales

	

SELF-TEST	Produce	a	matrix	scatterplot	of	Sales	Adverts,	Airplay	and	Attract	including
the	regression	line.

8.6.1.	Main	options	②



The	executive	has	past	 research	 indicating	 that	 advertising	budget	 is	 a	 significant	 predictor	of	 album
sales,	and	so	he	should	include	this	variable	in	the	model	first.	His	new	variables	(Airplay	and	Attract)
should,	 therefore,	be	entered	into	 the	model	after	advertising	budget.	This	method	 is	hierarchical	 (the
researcher	 decides	 in	which	order	 to	 enter	 variables	 into	 the	model	 based	on	past	 research).	To	do	 a
hierarchical	regression	in	SPSS	we	have	to	enter	 the	variables	 in	blocks	(each	block	representing	one
step	in	the	hierarchy).	To	get	to	the	main	Regression	dialog	box	select	 	
.	We	encountered	this	dialog	box	in	Figure	8.13	when	we	 looked	at	a	model	with	only	one	predictor.
Essentially,	 to	 set	 up	 the	 first	 block	we	 do	 exactly	what	we	 did	 before.	 Select	 the	 outcome	 variable
(album	sales)	and	drag	it	 to	the	box	labelled	Dependent	(or	click	on	 ).	We	also	need	to	specify	the
predictor	variable	for	the	first	block.	We’ve	decided	that	advertising	budget	should	be	entered	into	the
model	first,	so	select	this	variable	in	the	list	and	drag	it	to	the	box	labelled	Independent(s)	(or	click	on	
).	 Underneath	 the	 Independent(s)	 box,	 there	 is	 a	 drop-down	 menu	 for	 specifying	 the	Method	 of

regression	 (see	Section	8.5.1).	You	 can	 select	 a	 different	method	of	 variable	 entry	 for	 each	block	by
clicking	on	 ,	next	 to	where	it	says	Method.	The	default	option	 is	 forced	entry,	and	 this	 is	 the
option	we	want,	but	if	you	were	carrying	out	more	exploratory	work,	you	might	decide	to	use	one	of	the
stepwise	methods	(forward,	backward,	stepwise	or	remove).

Having	 specified	 the	 first	 block	 in	 the	 hierarchy,	 we	 need	 to	 move	 onto	 the	 second.	 To	 tell	 the
computer	 that	 you	want	 to	 specify	 a	 new	 block	 of	 predictors	 you	must	 click	 on	 .	This	 process
clears	the	Independent(s)	box	so	that	you	can	enter	the	new	predictors	(you	should	also	note	that	above
this	box	it	now	reads	Block	2	of	2	indicating	that	you	are	in	the	second	block	of	the	two	that	you	have	so
far	specified).	We	decided	that	the	second	block	would	contain	both	of	the	new	predictors	and	so	you
should	 click	 on	Airplay	 and	Attract	 (while	 holding	 down	Ctrl,	 or	Cmd	 if	 you	 use	 a	 Mac)	 in	 the
variables	list	and	drag	them	to	the	Independent(s)	box	or	click	on	 .	The	dialog	box	should	now	look
like	Figure	8.15.	To	move	between	blocks	use	the	 	and	 	buttons	(so	for	example,	 to	move
back	to	block	1,	click	on	 ).

FIGURE	8.15
Main	dialog	box	for	block	2	of	the	multiple	regression



It	 is	 possible	 to	 select	 different	methods	 of	 variable	 entry	 for	 different	 blocks	 in	 a	 hierarchy.	 So
although	we	specified	forced	entry	for	the	first	block,	we	could	now	specify	a	stepwise	method	for	the
second.	Given	that	we	have	no	previous	research	regarding	the	effects	of	attractiveness	and	airplay	on
album	sales,	we	might	be	justified	in	requesting	a	stepwise	method	for	this	block.	However,	because	of
the	 problems	 with	 stepwise	 methods,	 I	 am	 going	 to	 stick	 with	 forced	 entry	 for	 both	 blocks	 in	 this
example.

8.6.2.	Statistics	②

In	the	main	Regression	dialog	box	click	on	 	to	open	a	dialog	box	for	selecting	various	important
options	 relating	 to	 the	 model	 (see	 list	 below	 and	 Figure	 8.16).	 Most	 of	 these	 options	 relate	 to	 the
parameters	of	 the	model;	however,	 there	are	procedures	available	 for	checking	 the	assumptions	of	no
multicollinearity	 (collinearity	 diagnostics)	 and	 independence	 of	 errors	 (Durbin–Watson).	 When	 you
have	selected	the	statistics	you	require	(I	 recommend	all	but	 the	covariance	matrix	as	a	general	rule),
click	on	 	to	return	to	the	main	dialog	box.

Estimates:	This	option	is	selected	by	default	because	it	gives	us	the	estimated	coefficients	of	the
regression	model	(i.e.,	the	estimated	b-values).	Test	statistics	and	their	significance	are	produced
for	each	regression	coefficient:	a	t-test	is	used	to	see	whether	each	b	differs	significantly	from	zero
(see	Section	8.2.5).
Confidence	intervals:	This	option	produces	confidence	intervals	for	each	of	the	unstandardized
regression	coefficients.	Remember	that	if	the	assumptions	of	regression	are	not	met	these
confidence	intervals	will	be	inaccurate	and	we	should	use	bootstrap	confidence	intervals	instead.
Covariance	matrix:	This	option	produces	a	matrix	of	the	covariances,	correlation	coefficients	and
variances	between	the	regression	coefficients	of	each	variable	in	the	model.	A	variance–covariance
matrix	is	produced	with	variances	displayed	along	the	diagonal	and	covariances	displayed	as	off-



diagonal	elements.	The	correlations	are	produced	in	a	separate	matrix.

FIGURE	8.16
Statistics	dialog	box	for	regression	analysis

Model	fit:	This	option	is	vital	and	so	is	selected	by	default.	It	provides	not	only	a	statistical	test	of
the	model’s	ability	to	predict	the	outcome	variable	(the	F-test	described	in	Section	8.2.4),	but	also
the	value	of	R,	the	corresponding	R2	and	the	adjusted	R2.
R	squared	change:	This	option	displays	the	change	in	R2	resulting	from	the	inclusion	of	a	new
predictor	(or	block	of	predictors).	This	measure	is	a	useful	way	to	assess	the	contribution	of	new
predictors	(or	blocks)	to	explaining	variance	in	the	outcome.
Descriptives:	If	selected,	this	option	displays	a	table	of	the	mean,	standard	deviation	and	number	of
observations	of	all	of	the	variables	included	in	the	analysis.	A	correlation	matrix	is	also	displayed
showing	the	correlation	between	all	of	the	variables	and	the	one-tailed	probability	for	each
correlation	coefficient.	This	option	is	extremely	useful	because	the	correlation	matrix	can	be	used
to	assess	whether	there	is	multicollinearity.
Part	and	partial	correlations:	This	option	produces	the	zero-order	correlation	(the	Pearson
correlation)	between	each	predictor	and	the	outcome	variable.	It	also	produces	the	partial
correlation	between	each	predictor	and	the	outcome,	controlling	for	all	other	predictors	in	the
model.	Finally,	it	produces	the	part	correlation	(or	semi-partial	correlation)	between	each	predictor
and	the	outcome.	This	correlation	represents	the	relationship	between	each	predictor	and	the	part	of
the	outcome	that	is	not	explained	by	the	other	predictors	in	the	model.	As	such,	it	measures	the
unique	relationship	between	a	predictor	and	the	outcome	(see	Section	7.5).
Collinearity	diagnostics:	This	option	is	for	obtaining	collinearity	statistics	such	as	the	VIF,
tolerance,	eigenvalues	of	the	scaled,	uncentred	cross-products	matrix,	condition	indexes	and
variance	proportions	(see	Section	8.5.3).



Durbin-Watson:	This	option	produces	the	Durbin–Watson	test	statistic,	which	tests	the	assumption
of	independent	errors.	Unfortunately,	SPSS	does	not	provide	the	significance	value	of	this	test,	so
you	must	decide	for	yourself	whether	the	value	is	different	enough	from	2	to	be	cause	for	concern
(see	Section	8.3.2.1).
Casewise	diagnostics:	This	option,	if	selected,	lists	the	observed	value	of	the	outcome,	the
predicted	value	of	the	outcome,	the	difference	between	these	values	(the	residual)	and	this
difference	standardized.	Furthermore,	it	will	list	these	values	either	for	all	cases,	or	just	for	cases
for	which	the	standardized	residual	is	greater	than	3	(when	the	±	sign	is	ignored).	This	criterion
value	of	3	can	be	changed,	and	I	recommend	changing	it	to	2	for	reasons	that	will	become
apparent.	A	summary	table	of	residual	statistics	indicating	the	minimum,	maximum,	mean	and
standard	deviation	of	both	the	values	predicted	by	the	model	and	the	residuals	(see	Section	8.6.4)	is
also	produced.

8.6.3.	Regression	plots	②

Once	you	are	back	in	the	main	dialog	box,	click	on	 	to	activate	the	regression	Plots	dialog	box
shown	in	Figure	8.17.	This	dialog	box	provides	the	means	to	specify	several	graphs,	which	can	help	to
establish	 the	 validity	 of	 some	 regression	 assumptions.	 Most	 of	 these	 plots	 involve	 various	 residual
values,	which	will	be	described	in	more	detail	in	Section	8.6.4.

On	the	left-hand	side	of	the	dialog	box	is	a	list	of	several	variables.

DEPENDNT	(the	outcome	variable).
*ZPRED	(the	standardized	predicted	values	of	the	dependent	variable	based	on	the	model).	These
values	are	standardized	forms	of	the	values	predicted	by	the	model.
*ZRESID	(the	standardized	residuals,	or	errors).	These	values	are	the	standardized	differences
between	the	observed	data	and	the	values	that	the	model	predicts).
*DRESID	(the	deleted	residuals).	See	Section	8.3.1.1	for	details.
*ADJPRED	(the	adjusted	predicted	values).	See	Section	8.3.1.1	for	details.
*SRESID	(the	Studentized	residual).	See	Section	8.3.1.1	for	details.
*SDRESID	(the	Studentized	deleted	residual).	This	value	is	the	deleted	residual	divided	by	its
standard	error.

The	variables	 listed	 in	 this	dialog	box	all	come	under	 the	general	heading	of	residuals.	 In	Section
5.3.3.1	 we	 saw	 that	 a	 plot	 of	 *ZRESID	 (y-axis)	 against	 *ZPRED	 (x-axis)	 is	 useful	 for	 testing	 the
assumptions	of	independent	errors,	homoscedasticity	and	linearity.	A	plot	of	*SRESID	(y-axis)	against
*ZPRED	(x-axis)	will	show	up	any	heteroscedasticity	also.	Although	often	these	two	plots	are	virtually
identical,	 the	 latter	 is	 more	 sensitive	 on	 a	 case-by-case	 basis.	 To	 create	 these	 plots	 simply	 select	 a
variable	 from	 the	 list,	 and	 transfer	 it	 to	 the	 space	 labelled	 either	X	 or	Y	 (which	 refer	 to	 the	 axes)	 by
clicking	on	 .	When	you	have	selected	two	variables	for	the	first	plot	(as	is	the	case	in	Figure	8.17)
you	can	specify	a	new	plot	by	clicking	on	 .	This	process	clears	the	spaces	in	which	variables	are
specified.	If	you	click	on	 	and	would	like	to	return	to	the	plot	that	you	last	specified,	then	simply
click	on	 .	You	can	specify	up	to	nine	plots.

You	can	also	tick	the	box	labelled	Produce	all	partial	plots	which	will	produce	scatterplots	of	 the
residuals	 of	 the	 outcome	 variable	 and	 each	 of	 the	 predictors	 when	 both	 variables	 are	 regressed
separately	on	the	remaining	predictors.	Regardless	of	whether	the	previous	sentence	made	any	sense	to



you,	 these	 plots	 have	 several	 important	 characteristics	 that	 make	 them	 worth	 inspecting.	 First,	 the
gradient	of	the	regression	line	between	the	two	residual	variables	is	equivalent	to	the	coefficient	of	the
predictor	in	the	regression	equation.	As	such,	any	obvious	outliers	on	a	partial	plot	represent	cases	that
might	 have	 undue	 influence	 on	 a	 predictor’s	 regression	 coefficient.	 Second,	 non-linear	 relationships
between	a	predictor	and	the	outcome	variable	are	much	more	detectable	using	these	plots.	Finally,	they
are	a	useful	way	of	detecting	collinearity.	For	these	reasons,	I	recommend	requesting	them.

There	are	several	options	for	plots	of	the	standardized	residuals.	First,	you	can	select	a	Histogram	of
the	standardized	residuals	(this	 is	useful	 for	checking	 the	assumption	of	normality	of	errors).	Second,
you	can	ask	for	a	Normal	probability	plot,	which	also	provides	information	about	whether	the	residuals
in	the	model	are	normally	distributed.	When	you	have	selected	the	options	you	require,	click	on	
to	take	you	back	to	the	main	Regression	dialog	box.

FIGURE	8.17
The	Plots	dialog	box

8.6.4.	Saving	regression	diagnostics	②

In	Section	8.3	we	met	two	types	of	regression	diagnostics:	those	that	help	us	assess	how	well	our	model
fits	our	sample	and	those	that	help	us	detect	cases	that	have	a	large	influence	on	the	model	generated.	In
SPSS	we	can	choose	to	save	these	diagnostic	variables	in	the	data	editor	(so	SPSS	will	calculate	them
and	then	create	new	columns	in	the	data	editor	in	which	the	values	are	placed).

To	save	regression	diagnostics	you	need	to	click	on	 	in	the	main	Regression	dialog	box.	This
process	activates	the	Save	new	variables	dialog	box	(see	Figure	8.18).	Once	this	dialog	box	is	active,	it
is	a	simple	matter	 to	 tick	 the	boxes	next	 to	 the	required	statistics.	Most	of	 the	available	options	were
explained	in	Section	8.3,	and	Figure	8.18	shows	what	 I	consider	 to	be	a	 fairly	basic	set	of	diagnostic
statistics.	Standardized	(and	Studentized)	versions	of	these	diagnostics	are	generally	easier	to	interpret,
so	I	suggest	selecting	them	in	preference	to	the	unstandardized	versions.	Once	the	regression	has	been



run,	SPSS	creates	a	column	in	your	data	editor	for	each	statistic	requested	and	it	has	a	standard	set	of
variable	names	to	describe	each	one.	After	the	name,	there	will	be	a	number	that	refers	to	the	analysis
that	has	been	run.	So,	for	the	first	regression	run	on	a	data	set	the	variable	names	will	be	followed	by	a
1,	if	you	carry	out	a	second	regression	it	will	create	a	new	set	of	variables	with	names	followed	by	a	2,
and	 so	 on.	 The	 names	 of	 the	 variables	 that	 will	 be	 created	 are	 below.	When	 you	 have	 selected	 the
diagnostics	 you	 require	 (by	 clicking	 in	 the	 appropriate	 boxes),	 click	 on	 	 to	 return	 to	 the	main
Regression	dialog	box.

pre_1:	unstandardized	predicted	value;
zpr_1:	standardized	predicted	value;
adj_1:	adjusted	predicted	value;
sep_1:	standard	error	of	predicted	value;
res_1:	unstandardized	residual;
zre_1:	standardized	residual;
sre_1:	Studentized	residual;
dre_1:	deleted	residual;
sdr_1:	Studentized	deleted	residual;
mah_1:	Mahalanobis	distance;
coo_1:	Cook’s	distance;
lev_1:	centred	leverage	value;
sdb0_1:	standardized	DFBETA	(intercept);
sdb1_1:	standardized	DFBETA	(predictor	1);
sdb2_1:	standardized	DFBETA	(predictor	2);
sdf_1:	standardized	DFFIT;
cov_1:	covariance	ratio.

FIGURE	8.18
Dialog	box	for	regression	diagnostics



8.6.5.	Further	options	②

You	can	click	on	 	to	take	you	to	the	Options	dialog	box	(Figure	8.19).	The	first	set	of	options
allows	you	to	change	the	criteria	used	for	entering	variables	 in	a	stepwise	regression.	If	you	insist	on
doing	stepwise	regression,	then	it’s	probably	best	that	you	leave	the	default	criterion	of	.05	probability
for	entry	alone.	However,	you	can	make	this	criterion	more	stringent	(.01).	There	is	also	the	option	to
build	a	model	that	doesn’t	include	a	constant	(i.e.,	has	no	Y	 intercept).	This	option	should	also	be	left
alone.	Finally,	 you	 can	 select	 a	method	 for	 dealing	with	missing	 data	 points	 (see	SPSS	Tip	5.1).	 By
default,	SPSS	excludes	cases	listwise,	which	in	regression	means	that	if	a	person	has	a	missing	value	for
any	variable,	then	they	are	excluded	from	the	whole	analysis.	So,	for	example,	if	our	record	company
executive	didn’t	have	an	attractiveness	score	for	one	of	his	bands,	their	data	would	not	be	used	in	the
regression	 model.	 Another	 option	 is	 to	 exclude	 cases	 on	 a	 pairwise	 basis,	 which	 means	 that	 if	 a
participant	 has	 a	 score	 missing	 for	 a	 particular	 variable,	 then	 their	 data	 are	 excluded	 only	 from
calculations	involving	the	variable	for	which	they	have	no	score.	So,	data	for	the	band	for	which	there
was	 no	 attractiveness	 rating	 would	 still	 be	 used	 to	 calculate	 the	 relationships	 between	 advertising
budget,	airplay	and	album	sales.	However,	if	you	do	this,	many	of	your	variables	may	not	make	sense,
and	you	can	end	up	with	absurdities	such	as	R2	either	negative	or	greater	than	1.0.	So	it’s	not	a	good



option.
Another	possibility	is	to	replace	the	missing	score	with	the	average	score	for	this	variable	and	then

include	that	case	in	the	analysis	(so	our	example	band	would	be	given	an	attractiveness	rating	equal	to
the	average	attractiveness	of	all	bands).	The	problem	with	this	final	choice	is	that	it	is	likely	to	suppress
the	 true	 value	 of	 the	 standard	 deviation	 (and,	 more	 importantly,	 the	 standard	 error).	 The	 standard
deviation	will	be	suppressed	because	for	any	replaced	case	there	will	be	no	difference	between	the	mean
and	the	score,	whereas	if	data	had	been	collected	for	that	case	there	would,	almost	certainly,	have	been
some	difference	between	the	score	and	the	mean.	Obviously,	if	 the	sample	is	large	and	the	number	of
missing	values	small	then	this	is	not	a	serious	consideration.	However,	if	there	are	many	missing	values
this	choice	is	potentially	dangerous	because	smaller	standard	errors	are	more	likely	to	lead	to	significant
results	that	are	a	product	of	the	data	replacement	rather	than	a	genuine	effect.	The	final	option	is	to	use
the	Missing	Value	Analysis	routine	in	SPSS.	This	is	for	experts.	It	makes	use	of	the	fact	that	if	two	or
more	variables	are	present	and	correlated	for	most	cases	in	the	file,	and	an	occasional	value	is	missing,
you	can	replace	the	missing	values	with	estimates	far	better	than	the	mean	(some	of	these	features	are
described	in	Tabachnick	&	Fidell,	2012,	Chapter	4).

FIGURE	8.19
Options	for	linear	regression

8.6.6.	Robust	regression	②

We	can	get	bootstrapped	confidence	intervals	for	the	regression	coefficients	by	clicking	on	 	(see
Section	 5.4.3).	 However,	 this	 function	 doesn’t	 work	 when	 we	 have	 used	 the	 	 option	 to	 save
residuals,	so	we	can’t	use	it	now.	We	will	return	to	robust	regression	in	Section	8.8.



ODITI’S	LANTERN

Regression

‘I,	Oditi,	wish	to	predict	when	I	can	take	over	the	world,	and	rule	you	pathetic	mortals	with	will	of	pure	iron	…	erm..	ahem,	I	mean,	I
wish	to	predict	how	to	save	cute	kittens	from	the	jaws	of	rabid	dogs,	because	I’m	nice	like	that,	and	have	no	aspirations	to	take	over	the
world.	This	chapter	 is	so	 long	 that	some	of	you	will	die	before	you	reach	 the	end,	so	 ignore	 the	author’s	bumbling	drivel	and	stare
instead	into	my	lantern	of	wonderment.’

8.7.	Interpreting	multiple	regression	②

Having	selected	all	of	the	relevant	options	and	returned	to	the	main	dialog	box,	we	need	to	click	on	
to	run	the	analysis.	SPSS	will	spew	out	copious	amounts	of	output	in	the	viewer	window,	and	we	now
turn	to	look	at	how	to	make	sense	of	this	information.

8.7.1.	Descriptives	②

The	output	described	in	this	section	is	produced	using	the	options	in	the	Statistics	dialog	box	(see	Figure
8.16).	To	begin	with,	if	you	selected	the	Descriptives	option,	SPSS	will	produce	the	table	seen	in	Output
8.4.	This	table	tells	us	the	mean	and	standard	deviation	of	each	variable	in	our	data	set,	so	we	now	know
that	 the	 average	 number	 of	 album	 sales	 was	 193,200.	 This	 table	 isn’t	 necessary	 for	 interpreting	 the
regression	 model,	 but	 it	 is	 a	 useful	 summary	 of	 the	 data.	 In	 addition	 to	 the	 descriptive	 statistics,
selecting	 this	 option	 produces	 a	 correlation	matrix.	This	 table	 shows	 three	 things.	 First,	 it	 shows	 the
value	 of	 Pearson’s	 correlation	 coefficient	 between	 every	 pair	 of	 variables	 (e.g.,	 we	 can	 see	 that	 the
advertising	budget	had	a	large	positive	correlation	with	album	sales,	r	=	 .578).	Second,	 the	one-tailed
significance	of	each	correlation	is	displayed	(e.g.,	the	correlation	above	is	significant,	p	<	.001).	Finally,
the	number	of	cases	contributing	to	each	correlation	(N	=	200)	is	shown.

You	might	notice	that	along	the	diagonal	of	the	matrix	the	values	for	the	correlation	coefficients	are
all	 1.00	 (i.e.,	 a	 perfect	 positive	 correlation).	 The	 reason	 for	 this	 is	 that	 these	 values	 represent	 the
correlation	of	each	variable	with	itself,	so	obviously	the	resulting	values	are	1.	The	correlation	matrix	is
extremely	useful	for	getting	a	rough	idea	of	the	relationships	between	predictors	and	the	outcome,	and
for	a	preliminary	look	for	multicollinearity.	If	there	is	no	multicollinearity	in	the	data	then	there	should
be	no	substantial	correlations	(r	>	.9)	between	predictors.

OUTPUT	8.4
Descriptive	statistics	for	regression	analysis



If	we	 look	only	 at	 the	predictors	 (ignore	 album	sales)	 then	 the	highest	 correlation	 is	between	 the
attractiveness	of	 the	band	and	the	amount	of	airplay,	which	is	significant	at	a	 .01	level	(r	=	 .182,	p	=
.005).	Despite	the	significance	of	this	correlation,	the	coefficient	is	small	and	so	it	looks	as	though	our
predictors	 are	measuring	 different	 things	 (there	 is	 no	 collinearity).	We	 can	 see	 also	 that	 of	 all	 of	 the
predictors	the	number	of	plays	on	radio	correlates	best	with	the	outcome	(r	=	.599,	p	<	.001)	and	so	it	is
likely	that	this	variable	will	best	predict	album	sales.

CRAMMING	SAM’S	TIPS 	Descriptive	statistics
Use	the	descriptive	statistics	to	check	the	correlation	matrix	for	multicollinearity	–	that	is,	predictors	that	correlate	too	highly
with	each	other,	r	>	.9.

8.7.2.	Summary	of	model	②

The	next	section	of	output	describes	the	overall	model	(so	it	tells	us	whether	the	model	is	successful	in
predicting	album	sales).	Remember	 that	we	chose	a	hierarchical	method	and	so	each	set	of	 summary
statistics	 is	 repeated	for	each	stage	 in	 the	hierarchy.	 In	Output	8.5	you	should	note	 that	 there	are	 two
models.	Model	 1	 refers	 to	 the	 first	 stage	 in	 the	 hierarchy	when	 only	 advertising	 budget	 is	 used	 as	 a
predictor.	Model	2	refers	 to	when	all	 three	predictors	are	used.	Output	8.5	 is	 the	model	summary	and



this	table	was	produced	using	the	Model	fit	option.	This	option	is	selected	by	default	in	SPSS	because	it
provides	us	with	some	very	important	information	about	the	model:	the	values	of	R,	R2	and	the	adjusted
R2.	If	the	R	squared	change	and	Durbin-Watson	options	were	selected,	 then	 these	values	are	 included
also	(if	they	weren’t	selected	you’ll	find	that	you	have	a	smaller	table).

Under	the	model	summary	table	shown	in	Output	8.5	you	should	notice	that	SPSS	tells	us	what	the
dependent	 variable	 (outcome)	 was	 and	 what	 the	 predictors	 were	 in	 each	 of	 the	 two	 models.	 In	 the
column	labelled	R	are	the	values	of	the	multiple	correlation	coefficient	between	the	predictors	and	the
outcome.	When	only	advertising	budget	 is	used	as	 a	predictor,	 this	 is	 the	 simple	correlation	between
advertising	and	album	sales	(.578).	 In	fact	all	of	 the	statistics	for	model	1	are	 the	same	as	 the	simple
regression	model	earlier	(see	Section	8.4.3).	The	next	column	gives	us	a	value	of	R2,	which	we	already
know	is	a	measure	of	how	much	of	the	variability	in	the	outcome	is	accounted	for	by	the	predictors.	For
the	 first	 model	 its	 value	 is	 .335,	 which	 means	 that	 advertising	 budget	 accounts	 for	 33.5%	 of	 the
variation	in	album	sales.	However,	when	the	other	two	predictors	are	included	as	well	(model	2),	 this
value	increases	to	.665	or	66.5%	of	the	variance	in	album	sales.	Therefore,	if	advertising	accounts	for
33.5%,	we	can	tell	that	attractiveness	and	radio	play	account	for	an	additional	33%.14	So,	the	inclusion
of	the	two	new	predictors	has	explained	quite	a	large	amount	of	the	variation	in	album	sales.

OUTPUT	8.5	Regression	model	summary

The	adjusted	R2	gives	us	some	idea	of	how	well	our	model	generalizes	and	ideally	we	would	like	its
value	 to	be	 the	same	as,	or	very	close	 to,	 the	value	of	R2.	 In	 this	example	 the	difference	for	 the	final
model	is	small	(in	fact	the	difference	between	the	values	is	.665	−	.660	=	.005	or	0.5%).	This	shrinkage
means	 that	 if	 the	model	were	derived	 from	 the	population	 rather	 than	 a	 sample	 it	would	 account	 for
approximately	0.5%	less	variance	 in	 the	outcome.	If	you	apply	Stein’s	formula	you’ll	get	an	adjusted
value	 of	 .653	 (Jane	 Superbrain	 Box	 8.2),	 which	 is	 very	 close	 to	 the	 observed	 value	 of	 R2	 (.665)
indicating	that	the	cross-validity	of	this	model	is	very	good.

JANE	SUPERBRAIN	8.2

Maths	frenzy	③
We	can	have	 a	 look	 at	 how	 some	of	 the	values	 in	 the	output	 are	 computed	by	 thinking	back	 to	 the	 theory	part	 of	 the	 chapter.	For
example,	looking	at	the	change	in	R2	for	the	first	model,	we	have	only	one	predictor	(so	k	=	1)	and	200	cases	(N	=	200),	so	the	F	comes
from	equation	(8.10):15



In	model	2	in	Output	8.5	two	predictors	have	been	added	(attractiveness	and	radio	play),	so	the	new	model	has	3	predictors	(knew)	and
the	 previous	model	 had	 only	 1,	which	 is	 a	 change	 of	 2	 (kchange).	 The	 addition	 of	 these	 two	 predictors	 increases	R2	 by	 .330	 (R2

change),	making	the	R2	of	the	new	model	.665	(R2new).
16	The	F-ratio	for	this	change	comes	from	equation	(8.15):

We	can	also	apply	Stein’s	formula	(equation	(8.12))	to	R2	to	get	some	idea	of	its	likely	value	in	different	samples.	We	replace	n	with	the
sample	size	(200)	and	k	with	the	number	of	predictors	(3):

The	change	statistics	are	provided	only	 if	 requested,	and	these	 tell	us	whether	 the	change	in	R2	 is
significant.	In	Output	8.5,	the	change	is	reported	for	each	block	of	the	hierarchy.	So,	model	1	causes	R2
to	change	from	0	to	.335,	and	this	change	in	the	amount	of	variance	explained	gives	rise	to	an	F-ratio	of
99.59,	which	 is	 significant	with	 a	probability	 less	 than	 .001.	 In	model	2,	 in	which	 attractiveness	 and
radio	play	have	been	added	as	predictors,	R2	increases	by	.330,	making	the	R2	of	the	new	model	.665.
This	increase	yields	an	F-ratio	of	96.44	(Jane	Superbrain	Box	8.2),	which	is	significant	(p	<	.001).	The
change	statistics	therefore	tell	us	about	the	difference	made	by	adding	new	predictors	to	the	model.

Finally,	if	you	requested	the	Durbin–Watson	statistic	it	will	be	found	in	the	last	column	of	the	table
in	Output	8.5.	This	statistic	 informs	us	about	whether	 the	assumption	of	 independent	errors	 is	 tenable
(see	Section	8.3.2.1).	As	a	conservative	rule	I	suggested	that	values	less	than	1	or	greater	than	3	should
definitely	raise	alarm	bells	(although	I	urge	you	to	look	up	precise	values	for	the	situation	of	interest).
The	closer	to	2	that	the	value	is,	the	better,	and	for	these	data	the	value	is	1.950,	which	is	so	close	to	2
that	the	assumption	has	almost	certainly	been	met.

Output	 8.6	 shows	 the	 next	 part	 of	 the	 output,	 which	 contains	 an	ANOVA	 that	 tests	 whether	 the
model	 is	 significantly	 better	 at	 predicting	 the	 outcome	 than	 using	 the	 mean	 as	 a	 ‘best	 guess’.
Specifically,	the	F-ratio	represents	the	ratio	of	the	improvement	in	prediction	that	results	from	fitting	the
model,	 relative	 to	 the	 inaccuracy	 that	 still	 exists	 in	 the	model	 (see	Section	8.2.4).	This	 table	 is	 again
split	into	two	sections,	one	for	each	model.	We	are	told	the	value	of	the	sum	of	squares	for	the	model
(this	value	is	SSM	in	Section	8.2.4	and	represents	the	improvement	in	prediction	resulting	from	fitting	a
regression	line	to	the	data	rather	than	using	the	mean	as	an	estimate	of	the	outcome).	We	are	also	told
the	 residual	 sum	 of	 squares	 (this	 value	 is	 SSR	 in	 Section	 8.2.4	 and	 represents	 the	 total	 difference
between	the	model	and	the	observed	data).	We	are	also	told	the	degrees	of	freedom	(df)	for	each	term.
In	the	case	of	the	improvement	due	to	the	model,	this	value	is	equal	to	the	number	of	predictors	(1	for
the	 first	model	 and	 3	 for	 the	 second),	 and	 for	 SSR	 it	 is	 the	 number	 of	 observations	 (200)	minus	 the
number	 of	 coefficients	 in	 the	 regression	 model.	 The	 first	 model	 has	 two	 coefficients	 (one	 for	 the



predictor	and	one	for	the	constant)	whereas	the	second	has	four	(one	for	each	of	the	three	predictors	and
one	for	 the	constant).	Therefore,	model	1	has	198	degrees	of	 freedom	whereas	model	2	has	196.	The
average	sum	of	squares	(MS)	is	then	calculated	for	each	term	by	dividing	the	SS	by	the	df.	The	F-ratio
is	calculated	by	dividing	 the	average	 improvement	 in	prediction	by	 the	model	 (MSM)	by	 the	average
difference	 between	 the	 model	 and	 the	 observed	 data	 (MSR).	 If	 the	 improvement	 due	 to	 fitting	 the
regression	model	 is	much	 greater	 than	 the	 inaccuracy	within	 the	model	 then	 the	 value	 of	F	 will	 be
greater	than	1,	and	SPSS	calculates	the	exact	probability	of	obtaining	the	value	of	F	by	chance.	For	the
initial	 model	 the	 F-ratio	 is	 99.59,	 p	 <	 .001.	 For	 the	 second	 the	 F-ratio	 is	 129.498	 –	 also	 highly
significant	(p	<	.001).	We	can	interpret	these	results	as	meaning	that	both	models	significantly	improved
our	ability	to	predict	the	outcome	variable	compared	to	not	fitting	the	model.

OUTPUT	8.6

CRAMMING	SAM’S	TIPS 	The	model	summary
The	fit	of	the	regression	model	can	be	assessed	using	the	Model	Summary	and	ANOVA	tables	from	SPSS.
Look	for	the	R2	to	tell	you	the	proportion	of	variance	explained	by	the	model.
If	you	have	done	a	hierarchical	regression	then	assess	the	improvement	of	the	model	at	each	stage	of	the	analysis	by	looking	at
the	change	in	R2	and	whether	this	change	is	significant	(look	for	values	less	than	.05	in	the	column	labelled	Sig	F	Change).
The	ANOVA	also	tells	us	whether	the	model	is	a	significant	fit	of	the	data	overall	(look	for	values	less	than	.05	in	the	column
labelled	Sig.).
The	assumption	that	errors	are	independent	is	likely	to	be	met	if	the	Durbin–Watson	statistic	is	close	to	2	(and	between	1	and	3).

8.7.3.	Model	parameters	②

So	 far	we	have	 looked	 at	whether	 or	 not	 the	model	 has	 improved	our	 ability	 to	 predict	 the	 outcome
variable.	The	next	part	of	the	output	is	concerned	with	the	parameters	of	the	model.	Output	8.7	shows



the	model	parameters	for	both	steps	in	the	hierarchy.	Now,	the	first	step	in	our	hierarchy	was	to	include
advertising	budget	(as	we	did	for	the	simple	regression	earlier	in	this	chapter)	and	so	the	parameters	for
the	first	model	are	identical	to	the	parameters	obtained	in	Output	8.3.	Therefore,	we	will	discuss	only
the	parameters	for	 the	final	model	(in	which	all	predictors	were	 included).	The	format	of	 the	 table	of
coefficients	will	depend	on	the	options	selected.	The	confidence	 interval	for	 the	b-values,	collinearity
diagnostics	 and	 the	 part	 and	 partial	 correlations	will	 be	 present	 only	 if	 selected	 in	 the	 dialog	 box	 in
Figure	8.16.

Remember	 that	 in	 multiple	 regression	 the	 model	 takes	 the	 form	 of	 equation	 (8.6),	 and	 in	 that
equation	 there	 are	 several	 unknown	 parameters	 (the	 b-values).	 The	 first	 part	 of	 the	 table	 gives	 us
estimates	for	these	b-values,	and	these	values	 indicate	 the	 individual	contribution	of	each	predictor	 to
the	model.	By	replacing	the	b-values	in	equation	(8.6)	we	can	define	our	specific	model	as:

The	b-values	 tell	 us	 about	 the	 relationship	 between	 album	 sales	 and	 each	 predictor.	 If	 the	 value	 is
positive	we	can	tell	that	there	is	a	positive	relationship	between	the	predictor	and	the	outcome,	whereas
a	negative	coefficient	represents	a	negative	relationship.	For	these	data	all	three	predictors	have	positive
b-values	indicating	positive	relationships.	So,	as	advertising	budget	increases,	album	sales	increase;	as
plays	on	the	radio	increase,	so	do	album	sales;	and	finally,	more	attractive	bands	will	sell	more	albums.
The	b-values	 tell	 us	 more	 than	 this,	 though.	 They	 tell	 us	 to	 what	 degree	 each	 predictor	 affects	 the
outcome	if	the	effects	of	all	other	predictors	are	held	constant.

OUTPUT	8.7
Coefficients	of	the	regression	model17

Advertising	budget	(b	=	0.085):	This	value	indicates	that	as	advertising	budget	increases	by	one
unit,	album	sales	increase	by	0.085	units.	Both	variables	were	measured	in	thousands;	therefore,
for	every	£1000	more	spent	on	advertising,	an	extra	0.085	thousand	albums	(85	albums)	are	sold.
This	interpretation	is	true	only	if	the	effects	of	attractiveness	of	the	band	and	airplay	are	held
constant.
Airplay	(b	=	3.367):	This	value	indicates	that	as	the	number	of	plays	on	radio	in	the	week	before
release	increases	by	one,	album	sales	increase	by	3.367	units.	Therefore,	every	additional	play	of	a
song	on	radio	(in	the	week	before	release)	is	associated	with	an	extra	3.367	thousand	albums	(3367
albums)	being	sold.	This	interpretation	is	true	only	if	the	effects	of	attractiveness	of	the	band	and



advertising	are	held	constant.
Attractiveness	(b	=	11.086):	This	value	indicates	that	a	band	rated	one	unit	higher	on	the
attractiveness	scale	can	expect	additional	album	sales	of	11.086	units.	Therefore,	every	unit
increase	in	the	attractiveness	of	the	band	is	associated	with	an	extra	11.086	thousand	albums
(11,086	albums)	being	sold.	This	interpretation	is	true	only	if	the	effects	of	radio	airplay	and
advertising	are	held	constant.

Each	of	the	beta	values	has	an	associated	standard	error	indicating	to	what	extent	these	values	would
vary	across	different	samples,	and	these	standard	errors	are	used	to	determine	whether	or	not	the	b-value
differs	 significantly	 from	 zero.	 As	 we	 saw	 in	 Section	 8.4.3.2,	 a	 t-statistic	 can	 be	 derived	 that	 tests
whether	 a	 b-value	 is	 significantly	 different	 from	 0.	With	 only	 one	 predictor	 a	 significant	 value	 of	 t
indicates	 that	 the	slope	of	 the	regression	line	 is	significantly	different	from	horizontal,	but	with	many
predictors	it	is	not	so	easy	to	visualize	what	the	value	tells	us.	Instead,	it	is	easiest	to	conceptualize	the	t-
tests	as	measures	of	whether	the	predictor	is	making	a	significant	contribution	to	the	model.	Therefore,
if	the	t-test	associated	with	a	b-value	is	significant	(if	the	value	in	the	column	labelled	Sig.	is	less	than
.05)	then	the	predictor	is	making	a	significant	contribution	to	the	model.	The	smaller	the	value	of	Sig.
(and	 the	 larger	 the	 value	 of	 t),	 the	 greater	 the	 contribution	 of	 that	 predictor.	 For	 this	 model,	 the
advertising	budget,	t(196)	=	12.26,	p	<	.001,	the	amount	of	radio	play	prior	to	release,	t(196)	=	12.12,	p
<	 .001	and	attractiveness	of	 the	band,	 t(196)	=	4.55,	p	<	 .001,	 are	 all	 significant	predictors	of	 album
sales.18	 Remember	 that	 these	 significance	 tests	 are	 accurate	 only	 if	 the	 assumptions	 discussed	 in
Chapter	5	 are	met.	From	 the	magnitude	of	 the	 t-statistics	we	 can	 see	 that	 the	 advertising	budget	 and
radio	play	had	a	similar	impact,	whereas	the	attractiveness	of	the	band	had	less	impact.

The	b-values	 and	 their	 significance	 are	 important	 statistics	 to	 look	 at;	 however,	 the	 standardized
versions	of	the	b-values	are	probably	easier	to	interpret	(because	they	are	not	dependent	on	the	units	of
measurement	of	the	variables).	The	standardized	beta	values	(labelled	as	Beta,	bi)	tell	us	the	number	of
standard	deviations	 that	 the	outcome	will	 change	 as	 a	 result	 of	 one	 standard	deviation	 change	 in	 the
predictor.	The	standardized	beta	values	are	all	measured	in	standard	deviation	units	and	so	are	directly
comparable:	 therefore,	 they	provide	a	better	 insight	 into	 the	‘importance’	of	a	predictor	 in	 the	model.
The	 standardized	beta	values	 for	 airplay	and	advertising	budget	 are	virtually	 identical	 (.512	and	 .511
respectively)	indicating	that	both	variables	have	a	comparable	degree	of	importance	in	the	model	(this
concurs	with	what	the	magnitude	of	the	t-statistics	told	us).	To	interpret	these	values	literally,	we	need
to	know	the	standard	deviations	of	all	of	the	variables,	and	these	values	can	be	found	in	Output	8.4.

Advertising	budget	(standardized	ß	=	.511):	This	value	indicates	that	as	advertising	budget
increases	by	one	standard	deviation	(£485,655),	album	sales	increase	by	0.511	standard	deviations.
The	standard	deviation	for	album	sales	is	80,699	and	so	this	constitutes	a	change	of	41,240	sales
(0.511	×	80,699).	Therefore,	for	every	£485,655	more	spent	on	advertising,	an	extra	41,240	albums
are	sold.	This	interpretation	is	true	only	if	the	effects	of	attractiveness	of	the	band	and	airplay	are
held	constant.
Airplay	(standardized	ß	=	.512):	This	value	indicates	that	as	the	number	of	plays	on	radio	in	the
week	before	release	increases	by	one	standard	deviation	(12.27),	album	sales	increase	by	0.512
standard	deviations.	The	standard	deviation	for	album	sales	is	80,699	and	so	this	constitutes	a
change	of	41,320	sales	(0.512	×	80,699).	Therefore,	if	Radio	1	plays	the	song	an	extra	12.27	times
in	the	week	before	release,	41,320	extra	album	sales	can	be	expected.	This	interpretation	is	true
only	if	the	effects	of	attractiveness	of	the	band	and	advertising	are	held	constant.
Attractiveness	(standardized	ß	=	.192):	This	value	indicates	that	a	band	rated	one	standard
deviation	(1.40	units)	higher	on	the	attractiveness	scale	can	expect	additional	album	sales	of	0.192



standard	deviations	units.	This	constitutes	a	change	of	15,490	sales	(0.192	×	80,699).	Therefore,	a
band	with	an	attractiveness	rating	1.40	higher	than	another	band	can	expect	15,490	additional
sales.	This	interpretation	is	true	only	if	the	effects	of	radio	airplay	and	advertising	are	held
constant.

	

SELF-TEST	Think	back	to	what	the	confidence	interval	of	the	mean	represented	(Section
2.5.2).	Can	you	work	out	what	the	confidence	interval	for	b	represents?

We	 are	 also	 given	 the	 confidence	 intervals	 for	 the	 betas	 (again	 these	 are	 accurate	 only	 if	 the
assumptions	discussed	in	Chapter	5	are	met).	Imagine	that	we	collected	100	samples	of	data	measuring
the	 same	 variables	 as	 our	 current	 model.	 For	 each	 sample	 we	 could	 create	 a	 regression	 model	 to
represent	 the	 data.	 If	 the	model	 is	 reliable	 then	 we	 hope	 to	 find	 very	 similar	 parameters	 (bs)	 in	 all
samples.	The	 confidence	 intervals	 of	 the	 unstandardized	 beta	 values	 are	 boundaries	 constructed	 such
that	 in	 95%	 of	 samples	 these	 boundaries	 contain	 the	 population	 value	 of	 b	 (see	 Section	 2.5.2).
Therefore,	if	we’d	collected	100	samples,	and	calculated	the	confidence	intervals	for	b,	we	are	saying
that	95%	of	 these	confidence	 intervals	would	contain	 the	 true	value	of	b.	Therefore,	we	can	be	fairly
confident	that	the	confidence	interval	we	have	constructed	for	this	sample	will	contain	the	true	value	of
b	in	the	population.	This	being	so,	a	good	model	will	have	a	small	confidence	interval,	indicating	that
the	 value	 of	b	 in	 this	 sample	 is	 close	 to	 the	 true	 value	 of	b	 in	 the	 population.	 The	 sign	 (positive	 or
negative)	of	the	b-values	 tells	us	about	 the	direction	of	 the	relationship	between	the	predictor	and	the
outcome.	Therefore,	we	would	expect	 a	very	bad	model	 to	have	confidence	 intervals	 that	 cross	zero,
indicating	 that	 in	 the	 population	 the	 predictor	 could	 have	 a	 negative	 relationship	 to	 the	 outcome	 but
could	also	have	a	positive	relationship.	In	this	model	the	two	best	predictors	(advertising	and	airplay)
have	very	tight	confidence	intervals,	indicating	that	the	estimates	for	the	current	model	are	likely	to	be
representative	of	 the	true	population	values.	The	interval	for	attractiveness	is	wider	(but	still	does	not
cross	 zero),	 indicating	 that	 the	 parameter	 for	 this	 variable	 is	 less	 representative,	 but	 nevertheless
significant.

If	you	asked	for	part	and	partial	correlations,	then	they	will	appear	in	the	output	in	separate	columns
of	 the	 table.	 The	 zero-order	 correlations	 are	 the	 simple	 Pearson’s	 correlation	 coefficients	 (and	 so
correspond	 to	 the	 values	 in	Output	 8.4).	 The	 partial	 correlations	 represent	 the	 relationships	 between
each	predictor	and	the	outcome	variable,	controlling	for	the	effects	of	the	other	two	predictors.	The	part
correlations	represent	the	relationship	between	each	predictor	and	the	outcome,	controlling	for	the	effect
that	the	other	two	variables	have	on	the	outcome.	In	effect,	these	part	correlations	represent	the	unique
relationship	that	each	predictor	has	with	the	outcome.	If	you	opt	to	do	a	stepwise	regression,	you	would
find	that	variable	entry	is	based	initially	on	the	variable	with	the	largest	zero-order	correlation	and	then
on	the	part	correlations	of	the	remaining	variables.	Therefore,	airplay	would	be	entered	first	(because	it
has	 the	 largest	 zero-order	 correlation),	 then	 advertising	 budget	 (because	 its	 part	 correlation	 is	 bigger
than	attractiveness)	and	then	finally	attractiveness	–	try	running	a	forward	stepwise	regression	on	these
data	 to	 see	 if	 I’m	 right.	 Finally,	 we	 are	 given	 details	 of	 the	 collinearity	 statistics,	 but	 these	 will	 be
discussed	in	Section	8.7.5.



CRAMMING	SAM’S	TIPS 	Model	parameters
The	individual	contribution	of	variables	to	the	regression	model	can	be	found	in	the	Coefficients	table	from	SPSS.	If	you	have
done	a	hierarchical	regression	then	look	at	the	values	for	the	final	model.
For	each	predictor	variable,	you	can	see	if	it	has	made	a	significant	contribution	to	predicting	the	outcome	by	looking	at	the
column	labelled	Sig.	(values	less	than	.05	are	significant).
The	standardized	beta	values	tell	you	the	importance	of	each	predictor	(bigger	absolute	value	=	more	important).
The	tolerance	and	VIF	values	will	also	come	in	handy	later	on,	so	make	a	note	of	them.

8.7.4.	Excluded	variables	②

At	each	stage	of	a	regression	analysis	SPSS	provides	a	summary	of	any	variables	that	have	not	yet	been
entered	into	the	model.	In	a	hierarchical	model,	this	summary	has	details	of	the	variables	that	have	been
specified	to	be	entered	in	subsequent	steps,	and	in	stepwise	regression	this	table	contains	summaries	of
the	variables	that	SPSS	is	considering	entering	into	the	model.	For	this	example,	there	is	a	summary	of
the	 excluded	 variables	 (Output	8.8)	 for	 the	 first	 stage	 of	 the	 hierarchy	 (there	 is	 no	 summary	 for	 the
second	 stage	 because	 all	 predictors	 are	 in	 the	 model).	 The	 summary	 gives	 an	 estimate	 of	 each
predictor’s	 beta	 value	 if	 it	was	 entered	 into	 the	 equation	 at	 this	 point	 and	 calculates	 a	 t-test	 for	 this
value.	 In	 a	 stepwise	 regression,	 SPSS	 should	 enter	 the	 predictor	with	 the	 highest	 t-statistic	 and	will
continue	entering	predictors	until	there	are	none	left	with	t-statistics	 that	have	significance	values	less
than	 .05.	 The	 partial	 correlation	 also	 provides	 some	 indication	 as	 to	 what	 contribution	 (if	 any)	 an
excluded	predictor	would	make	if	it	were	entered	into	the	model.

OUTPUT	8.8

8.7.5.	Assessing	multicollinearity	②

Output	8.7	provided	some	measures	of	whether	there	is	collinearity	in	the	data.	Specifically,	it	provided
the	VIF	and	tolerance	statistics	(with	tolerance	being	1	divided	by	the	VIF).	We	can	apply	the	guidelines
from	Section	8.5.3	 to	our	model.	The	VIF	values	are	all	well	below	10	and	the	 tolerance	statistics	all
well	 above	 0.2;	 therefore,	 we	 can	 safely	 conclude	 that	 there	 is	 no	 collinearity	 within	 our	 data.	 To



calculate	the	average	VIF	we	simply	add	the	VIF	values	for	each	predictor	and	divide	by	the	number	of
predictors	(k):

The	average	VIF	is	very	close	to	1	and	this	confirms	that	collinearity	is	not	a	problem	for	this	model.
SPSS	also	produces	a	table	of	eigenvalues	of	the	scaled,	uncentred	cross-products	matrix,	condition

indexes	and	variance	proportions.	There	is	a	lengthy	discussion,	and	example,	of	collinearity	in	Section
19.8.2	and	how	to	detect	it	using	variance	proportions,	so	I	will	limit	myself	now	to	saying	that	we	are
looking	 for	 large	 variance	 proportions	 on	 the	 same	 small	 eigenvalues	 (Jane	 Superbrain	 Box	 8.3).
Therefore,	in	Output	8.9	we	look	at	the	bottom	few	rows	of	the	table	(these	are	the	small	eigenvalues)
and	look	for	any	variables	 that	both	have	high	variance	proportions	for	 that	eigenvalue.	The	variance
proportions	 vary	 between	 0	 and	 1,	 and	 for	 each	 predictor	 should	 be	 distributed	 across	 different
dimensions	 (or	eigenvalues).	For	 this	model,	you	can	see	 that	each	predictor	has	most	of	 its	variance
loading	onto	a	different	dimension	(advertising	has	96%	of	variance	on	dimension	2,	airplay	has	93%	of
variance	on	dimension	3	and	attractiveness	has	92%	of	variance	on	dimension	4).

These	 data	 represent	 a	 classic	 example	 of	 no	multicollinearity.	 For	 an	 example	 of	when	 collinearity
exists	in	the	data	and	some	suggestions	about	what	can	be	done,	see	Chapters	19	(Section	19.8.2)	and	17
(Section	17.3.3.3).

OUTPUT	8.9

CRAMMING	SAM’S	TIPS 	Multicollinearity
To	check	for	multicollinearity,	use	the	VIF	values	from	the	table	labelled	Coefficients	in	the	SPSS	output.
If	these	values	are	less	than	10,	then	there	probably	isn’t	cause	for	concern.
If	you	take	the	average	of	VIF	values,	and	it	is	not	substantially	greater	than	1,	then	there’s	also	no	cause	for	concern.



JANE	SUPERBRAIN	8.3

What	are	eigenvectors	and	eigenvalues?	④
The	definitions	 and	mathematics	 of	 eigenvalues	 and	 eigenvectors	 are	 very	 complicated	 and	most	 of	 us	 need	not	worry	 about	 them
(although	they	do	crop	up	again	in	Chapters	16	and	17).	However,	although	the	mathematics	is	hard,	they	are	quite	easy	to	visualize.
Imagine	we	have	two	variables:	the	salary	a	supermodel	earns	in	a	year,	and	how	attractive	she	is.	Also	imagine	these	two	variables	are
normally	distributed	and	so	can	be	considered	together	as	a	bivariate	normal	distribution.	If	these	variables	are	correlated,	then	their
scatterplot	forms	an	ellipse:	if	we	draw	a	dashed	line	around	the	outer	values	of	the	scatterplot	we	get	something	oval	shaped	(Figure
8.20).	We	can	draw	two	lines	to	measure	the	length	and	height	of	this	ellipse.	These	lines	are	the	eigenvectors	of	the	original	correlation
matrix	for	these	two	variables	(a	vector	is	just	a	set	of	numbers	that	tells	us	the	location	of	a	line	in	geometric	space).	Note	that	the	two
lines	we’ve	drawn	(one	for	height	and	one	for	width	of	the	oval)	are	perpendicular;	that	is,	they	are	at	90	degrees	to	each	other,	which
means	that	they	are	independent	of	one	another).	So,	with	two	variables,	eigenvectors	are	just	lines	measuring	the	length	and	height	of
the	ellipse	that	surrounds	the	scatterplot	of	data	for	those	variables.

If	we	add	a	 third	variable	 (e.g.,	 the	 length	of	 experience	of	 the	 supermodel)	 then	all	 that	happens	 is	our	 scatterplot	gets	 a	 third
dimension,	 the	 ellipse	 turns	 into	 something	 shaped	 like	 a	 rugby	 ball	 (or	 American	 football),	 and	 because	 we	 now	 have	 a	 third
dimension	(height,	width	and	depth)	we	get	an	extra	eigenvector	to	measure	this	extra	dimension.	If	we	add	a	fourth	variable,	a	similar
logic	 applies	 (although	 it’s	 harder	 to	 visualize):	 we	 get	 an	 extra	 dimension,	 and	 an	 eigenvector	 to	 measure	 that	 dimension.	 Each
eigenvector	has	an	eigenvalue	that	tells	us	its	length	(i.e.,	the	distance	from	one	end	of	the	eigenvector	to	the	other).	So,	by	looking	at
all	of	the	eigenvalues	for	a	data	set,	we	know	the	dimensions	of	the	ellipse	or	rugby	ball:	put	more	generally,	we	know	the	dimensions
of	the	data.	Therefore,	the	eigenvalues	show	how	evenly	(or	otherwise)	the	variances	of	the	matrix	are	distributed.

FIGURE	8.20	A	scatterplot	of	two	variables	forms	an	ellipse

FIGURE	8.21	Perfectly	uncorrelated	(left)	and	correlated	(right)	variables

In	the	case	of	two	variables,	the	condition	of	the	data	is	related	to	the	ratio	of	the	larger	eigenvalue	to	the	smaller.	Figure	8.21	shows



the	two	extremes:	when	there	is	no	relationship	at	all	between	variables	(left),	and	when	there	is	a	perfect	relationship	(right).	When
there	is	no	relationship,	the	scatterplot	will	be	contained	roughly	within	a	circle	(or	a	sphere	if	we	had	three	variables).	If	we	draw	lines
that	measure	 the	height	and	width	of	 this	circle	we’ll	 find	 that	 these	 lines	are	 the	same	length.	The	eigenvalues	measure	 the	 length,
therefore	 the	 eigenvalues	will	 also	 be	 the	 same.	 So,	when	we	 divide	 the	 largest	 eigenvalue	 by	 the	 smallest	we’ll	 get	 a	 value	 of	 1
(because	 the	 eigenvalues	 are	 the	 same).	 When	 the	 variables	 are	 perfectly	 correlated	 (i.e.,	 there	 is	 perfect	 collinearity)	 then	 the
scatterplot	forms	a	straight	line	and	the	ellipse	surrounding	it	will	also	collapse	to	a	straight	line.	Therefore,	the	height	of	the	ellipse
will	be	very	small	indeed	(it	will	approach	zero).	Therefore,	when	we	divide	the	largest	eigenvalue	by	the	smallest	we’ll	get	a	value
that	tends	to	infinity	(because	the	smallest	eigenvalue	is	close	to	zero).	Therefore,	an	infinite	condition	index	is	a	sign	of	deep	trouble.

8.7.6.	Bias	in	the	model:	casewise	diagnostics	②

The	final	stage	of	the	general	procedure	outlined	in	Figure	8.11	is	to	check	the	residuals	for	evidence	of
bias.	We	do	 this	 in	 two	stages.	The	 first	 is	 to	examine	 the	casewise	diagnostics,	and	 the	second	 is	 to
check	the	assumptions	discussed	in	Chapter	5.	SPSS	produces	a	summary	table	of	the	residual	statistics,
and	these	should	be	examined	for	extreme	cases.	Output	8.10	shows	any	cases	that	have	a	standardized
residual	less	than	−2	or	greater	than	2	(remember	that	we	changed	the	default	criterion	from	3	to	2	in
Figure	8.16).	I	mentioned	in	Section	8.3.1.1	that	in	an	ordinary	sample	we	would	expect	95%	of	cases	to
have	 standardized	 residuals	within	 about	 ±2.	We	 have	 a	 sample	 of	 200,	 therefore	 it	 is	 reasonable	 to
expect	about	10	cases	(5%)	to	have	standardized	residuals	outside	of	these	limits.	From	Output	8.10	we
can	see	 that	we	have	12	cases	 (6%)	 that	are	outside	 the	 limits:	 therefore,	our	sample	 is	within	1%	of
what	we	would	expect.	In	addition,	99%	of	cases	should	lie	within	±2.5	and	so	we	would	expect	only
1%	of	 cases	 to	 lie	outside	 these	 limits.	From	 the	 cases	 listed	here,	 it	 is	 clear	 that	 two	cases	 (1%)	 lie
outside	of	the	limits	(cases	164	and	169).	Therefore,	our	sample	appears	to	conform	to	what	we	would
expect	for	a	fairly	accurate	model.	These	diagnostics	give	us	no	real	cause	for	concern	except	that	case
169	 has	 a	 standardized	 residual	 greater	 than	 3,	which	 is	 probably	 large	 enough	 for	 us	 to	 investigate
further.

OUTPUT	8.10

You	may	remember	that	in	Section	8.6.4	we	asked	SPSS	to	save	various	diagnostic	statistics.	You
should	find	that	 the	data	editor	now	contains	columns	for	 these	variables.	It	 is	perfectly	acceptable	to



check	these	values	in	the	data	editor,	but	you	can	also	get	SPSS	to	list	the	values	in	your	viewer	window
too.	To	list	variables	you	need	to	use	the	Case	Summaries	command,	which	can	be	found	by	selecting	

	 .	 Figure	 8.22	 shows	 the	 dialog	 box	 for	 this
function.	 Simply	 select	 the	 variables	 that	 you	 want	 to	 list	 and	 transfer	 them	 to	 the	 box	 labelled
Variables	by	clicking	on	 .	By	default,	SPSS	will	 limit	 the	output	 to	 the	 first	100	cases,	but	 if	you
want	to	list	all	of	your	cases	then	deselect	this	option	(see	also	SPSS	Tip	8.1).	It	is	also	very	important
to	select	the	Show	case	numbers	option	to	enable	you	to	tell	the	case	number	of	any	problematic	cases.

To	save	space,	Output	8.11	shows	the	influence	statistics	for	12	cases	that	I	selected.	None	of	them
have	a	Cook’s	distance	greater	 than	1	(even	case	169	 is	well	below	this	criterion)	and	so	none	of	 the
cases	has	an	undue	influence	on	the	model.	The	average	leverage	can	be	calculated	as	(k	+	1)/n	=	4/200
=	0.02,	and	so	we	are	looking	for	values	either	twice	as	large	as	this	(0.04)	or	three	times	as	large	(0.06)
depending	on	which	statistician	you	trust	most	(see	Section	8.3.1.2).	All	cases	are	within	the	boundary
of	three	times	the	average	and	only	case	1	is	close	to	two	times	the	average.

FIGURE	8.22
The	Summarize	Cases	dialog	box

SPSS	TIP	8.1 	Selecting	cases	③
In	 large	 data	 sets,	 a	 useful	 strategy	when	 summarizing	 cases	 is	 to	 use	 SPSS’s	Select	Cases	 function	 (see	Section	 5.4.2)	 and	 to	 set
conditions	that	will	select	problematic	cases.	For	example,	you	could	create	a	variable	that	selects	cases	with	a	Cook’s	distance	greater
than	1	by	running	this	syntax:

USE	ALL.



COMPUTE	cook_problem=(COO_1	>	1).

VARIABLE	LABELS	cook_problem	‘Cooks	distance	greater	than	1’.

VALUE	LABELS	cook_problem	0	‘Not	Selected’	1	‘Selected’.

FILTER	BY	cook_problem.

EXECUTE.

This	syntax	creates	a	variable	called	cook_problem,	based	on	whether	Cook’s	distance	 is	greater	 than	1	 (the	compute	 command),	 it
labels	this	variable	as	‘Cooks	distance	greater	than	1’	(the	variable	labels	command),	sets	value	labels	to	be	1	=	include,	0	=	exclude
(the	value	labels	command),	and	finally	filters	the	data	set	by	this	new	variable	(the	filter	by	command).	Having	selected	cases,	you	can
use	case	summaries	to	see	which	cases	meet	the	condition	you	set	(in	this	case	having	Cook’s	distance	greater	than	1).

Finally,	 from	our	 guidelines	 for	 the	Mahalanobis	 distance	we	 saw	 that	with	 a	 sample	of	 100	 and
three	 predictors,	 values	 greater	 than	 15	were	 problematic.	Also,	with	 three	 predictors,	 values	 greater
than	 7.81	 are	 significant	 (p	 <	 .05).	 None	 of	 our	 cases	 come	 close	 to	 exceeding	 the	 criterion	 of	 15,
although	 a	 few	 would	 be	 deemed	 ‘significant’	 (e.g.,	 case	 1).	 The	 evidence	 does	 not	 suggest	 major
problems	with	no	 influential	 cases	within	our	data	 (although	all	 cases	would	need	 to	be	examined	 to
confirm	this	fact).

OUTPUT	8.11

We	can	look	also	at	the	DFBeta	statistics	to	see	whether	any	case	would	have	a	large	influence	on
the	regression	parameters.	An	absolute	value	greater	than	1	is	a	problem	and	in	all	cases	the	values	lie
within	±1,	which	shows	that	these	cases	have	no	undue	influence	over	the	regression	parameters.

There	is	also	a	column	for	the	covariance	ratio.	We	saw	in	Section	8.3.1.2	that	we	need	to	use	the
following	criteria:



CVRi	>	1	+	[3(k	+	1)/n]	=	1	+	[3(3	+	1)/200]	=	1.06,
CVRi	<	1	−	[3(k	+	1)/n]	=	1	−	[3(3	+	1)/200]	=	0.94.

Therefore,	we	are	 looking	for	any	cases	 that	deviate	substantially	 from	these	boundaries.	Most	of
our	12	potential	outliers	have	CVR	values	within	or	 just	outside	 these	boundaries.	The	only	case	 that
causes	concern	is	case	169	(again)	whose	CVR	is	some	way	below	the	bottom	limit.	However,	given	the
Cook’s	distance	for	this	case,	there	is	probably	little	cause	for	alarm.

You	would	 have	 requested	 other	 diagnostic	 statistics,	 and	 from	what	 you	 know	 from	 the	 earlier
discussion	of	them	you	would	be	well	advised	to	glance	over	them	in	case	of	any	unusual	cases	in	the
data.	However,	from	this	minimal	set	of	diagnostics	we	appear	to	have	a	fairly	reliable	model	that	has
not	been	unduly	influenced	by	any	subset	of	cases.

CRAMMING	SAM’S	TIPS 	Residuals
You	need	to	look	for	cases	that	might	be	influencing	the	regression	model:

Look	at	standardized	residuals	and	check	that	no	more	than	5%	of	cases	have	absolute	values	above	2,	and	that	no	more	than
about	1%	have	absolute	values	above	2.5.	Any	case	with	a	value	above	about	3	could	be	an	outlier.
Look	in	the	data	editor	for	the	values	of	Cook’s	distance:	any	value	above	1	indicates	a	case	that	might	be	influencing	the	model.
Calculate	the	average	leverage	(the	number	of	predictors	plus	1,	divided	by	the	sample	size)	and	then	look	for	values	greater
than	twice	or	three	times	this	average	value.
For	Mahalanobis	distance,	a	crude	check	is	to	look	for	values	above	25	in	large	samples	(500)	and	values	above	15	in	smaller
samples	(100).	However,	Barnett	and	Lewis	(1978)	should	be	consulted	for	more	detailed	analysis.
Look	for	absolute	values	of	DFBeta	greater	than	1.
Calculate	the	upper	and	lower	limit	of	acceptable	values	for	the	covariance	ratio,	CVR.	The	upper	limit	is	1	plus	three	times	the
average	leverage,	while	the	lower	limit	is	1	minus	three	times	the	average	leverage.	Cases	that	have	a	CVR	that	falls	outside
these	limits	may	be	problematic.

8.7.7.	Bias	in	the	model:	assumptions	②

The	general	procedure	outlined	in	Figure	8.11	suggests	that,	having	fitted	a	model,	we	need	to	look	for
evidence	 of	 bias,	 and	 the	 second	 stage	 of	 this	 process	 is	 to	 check	 some	 assumptions.	 I	 urge	 you	 to
review	Chapter	5	 to	 remind	yourself	of	 the	main	assumptions	and	 the	 implications	of	violating	 them.
We	have	already	looked	for	collinearity	within	the	data	and	used	Durbin–Watson	to	check	whether	the
residuals	 in	 the	 model	 are	 independent.	 We	 saw	 in	 Section	 5.3.3.1	 that	 we	 can	 look	 for
heteroscedasticity	and	non-linearity	using	a	plot	of	standardized	residuals	against	standardized	predicted
values.	We	asked	for	this	plot	in	Section	8.6.3.	If	everything	is	OK	then	this	graph	should	look	like	a
random	array	of	dots,	 if	 the	graph	 funnels	out	 then	 that	 is	 a	 sign	of	heteroscedasticity	and	any	curve
suggests	non-linearity	(see	Figure	5.20).	Figure	8.23	(top	left)	shows	the	graph	for	our	model.	Note	how
the	 points	 are	 randomly	 and	 evenly	 dispersed	 throughout	 the	 plot.	 This	 pattern	 is	 indicative	 of	 a



situation	in	which	the	assumptions	of	linearity	and	homoscedasticity	have	been	met.	Compare	this	with
the	examples	in	Figure	5.20.

Figure	 8.23	 also	 shows	 the	 partial	 plots,	 which	 are	 scatterplots	 of	 the	 residuals	 of	 the	 outcome
variable	 and	 each	 of	 the	 predictors	 when	 both	 variables	 are	 regressed	 separately	 on	 the	 remaining
predictors.	 Obvious	 outliers	 on	 a	 partial	 plot	 represent	 cases	 that	 might	 have	 undue	 influence	 on	 a
predictor’s	 regression	 coefficient,	 and	 non-linear	 relationships	 and	 heteroscedasticity	 can	 be	 detected
using	these	plots	as	well.	For	advertising	budget	(Figure	8.23,	top	right)	the	partial	plot	shows	the	strong
positive	relationship	to	album	sales.	There	are	no	obvious	outliers	on	this	plot,	and	the	cloud	of	dots	is
evenly	spaced	out	around	 the	 line,	 indicating	homoscedasticity.	For	airplay	 (Figure	8.23,	 bottom	 left)
the	partial	plot	shows	a	strong	positive	relationship	to	album	sales.	The	pattern	of	the	residuals	is	similar
to	 advertising	 (which	 would	 be	 expected,	 given	 the	 similarity	 of	 the	 standardized	 betas	 of	 these
predictors).	There	are	no	obvious	outliers	on	this	plot,	and	the	cloud	of	dots	is	evenly	spaced	around	the
line,	indicating	homoscedasticity.	For	attractiveness	(Figure	8.23,	bottom	right)	the	plot	again	shows	a
positive	relationship	to	album	sales.	The	relationship	looks	less	linear	than	for	the	other	predictors,	and
the	dots	show	some	funnelling,	indicating	greater	spread	at	high	levels	of	attractiveness.	There	are	no
obvious	 outliers	 on	 this	 plot,	 but	 the	 funnel-shaped	 cloud	 of	 dots	 might	 indicate	 a	 violation	 of	 the
assumption	of	homoscedasticity.

FIGURE	8.23
Plot	of	standardized	predicted	values	against	standardized	residuals	(top	left),	and	partial	plots	of	album
sales	against	advertising	(top	right),	airplay	(bottom	left)	and	attractiveness	of	the	band	(bottom	right)

To	test	the	normality	of	residuals,	we	look	at	the	histogram	and	normal	probability	plot	selected	in
Figure	8.17.	Figure	8.24	 shows	 the	 histogram	and	normal	 probability	 plot	 of	 the	 data	 for	 the	 current
example.	Compare	these	to	examples	of	non-normality	in	Section	5.3.2.1.	For	the	album	sales	data,	the
distribution	is	very	normal:	the	histogram	is	symmetrical	and	approximately	bell-shaped.	The	P-P	plot



shows	up	deviations	from	normality	as	deviations	from	the	diagonal	line	(see	Section	5.3.2.1).	For	our
model,	the	dots	lie	almost	exactly	along	the	diagonal,	which	as	we	know	indicates	a	normal	distribution:
hence	this	plot	also	suggests	that	the	residuals	are	normally	distributed.

FIGURE	8.24
Histograms	and	normal	P-P	plots	of	normally	distributed	residuals	(left-hand	side)	and	non-normally
distributed	residuals	(right-hand	side)

CRAMMING	SAM’S	TIPS 	Model	assumptions
Look	at	the	graph	of	ZRESID*	plotted	against	ZPRED*.	If	it	looks	like	a	random	array	of	dots	then	this	is	good.	If	the	dots	seem
to	get	more	or	less	spread	out	over	the	graph	(look	like	a	funnel)	then	this	is	probably	a	violation	of	the	assumption	of
homogeneity	of	variance.	If	the	dots	have	a	pattern	to	them	(i.e.,	a	curved	shape)	then	this	is	probably	a	violation	of	the
assumption	of	linearity.	If	the	dots	seem	to	have	a	pattern	and	are	more	spread	out	at	some	points	on	the	plot	than	others	then	this
probably	reflects	violations	of	both	homogeneity	of	variance	and	linearity.	Any	of	these	scenarios	puts	the	validity	of	your	model
into	question.	Repeat	the	above	for	all	partial	plots	too.
Look	at	histograms	and	P-P	plots.	If	the	histograms	look	like	normal	distributions	(and	the	P-P	plot	looks	like	a	diagonal	line),
then	all	is	well.	If	the	histogram	looks	non-normal	and	the	P-P	plot	looks	like	a	wiggly	snake	curving	around	a	diagonal	line	then
things	are	less	good.	Be	warned,	though:	distributions	can	look	very	non-normal	in	small	samples	even	when	they	are	normal.

8.8.	What	if	I	violate	an	assumption?	Robust	regression	②

We	 could	 summarize	 by	 saying	 that	 our	model	 appears,	 in	most	 senses,	 to	 be	 both	 accurate	 for	 the
sample	 and	 generalizable	 to	 the	 population.	 The	 only	 slight	 glitch	 is	 some	 concern	 over	 whether
attractiveness	 ratings	had	violated	 the	 assumption	of	homoscedasticity.	Therefore,	we	could	 conclude
that	in	our	sample,	advertising	budget	and	airplay	are	fairly	equally	important	in	predicting	album	sales.
Attractiveness	of	the	band	is	a	significant	predictor	of	album	sales	but	is	less	important	than	the	other
two	 predictors	 (and	 probably	 needs	 verification	 because	 of	 possible	 heteroscedasticity).	 The
assumptions	seem	to	have	been	met	and	so	we	can	probably	assume	that	this	model	would	generalize	to
any	 album	 being	 released.	 However,	 this	 won’t	 always	 be	 the	 case:	 there	 will	 be	 times	 when	 you



uncover	problems.	It’s	worth	looking	carefully	at	Chapter	5	to	see	exactly	what	the	implications	are	of
violating	 assumptions,	 but	 in	 brief	 it	 will	 invalidate	 significance	 tests,	 confidence	 intervals	 and
generalization	of	the	model.	These	problems	can	be	largely	overcome	by	using	robust	methods	such	as
bootstrapping	 (Section	 5.4.3)	 to	 generate	 confidence	 intervals	 and	 significance	 tests	 of	 the	 model
parameters.	 Therefore,	 if	 you	 uncover	 problems,	 rerun	 your	 regression,	 select	 the	 same	 options	 as
before,	 but	 click	 	 in	 the	main	 dialog	 box	 (Figure	 8.13)	 to	 access	 the	 bootstrap	 function.	We
discussed	 this	 dialog	 box	 in	 Section	 5.4.3;	 to	 recap,	 select	 	 to	 activate
bootstrapping,	 and	 to	 get	 a	 95%	confidence	 interval	 click	 	 or	 .
For	 this	 analysis,	 let’s	 ask	 for	 a	 bias	 corrected	 and	 accelerated	 (BCa)	 confidence	 interval.	 The	 other
thing	is	that	bootstrapping	doesn’t	appear	to	work	if	you	ask	SPSS	to	save	diagnostics;	therefore,	click
on	 	to	open	the	dialog	box	in	Figure	8.18	and	make	sure	that	everything	is	deselected.	Back	in	the
main	dialog	box,	click	on	 	to	run	the	analysis.

LABCOAT	LENI’S	REAL	RESEARCH	8.1

I	want	to	be	loved	(on	Facebook)	①
Social	media	websites	such	as	Facebook	seem	to	have	taken	over	the	world.	These	websites	offer	an	unusual	opportunity	to	carefully
manage	your	self-presentation	to	others	(i.e.,	you	can	try	to	appear	to	be	cool	when	in	fact	you	write	statistics	books,	appear	attractive
when	you	have	huge	pustules	all	over	your	face,	fashionable	when	you	wear	1980s	heavy	metal	band	T-shirts,	and	so	on).	Ong	et	al.
(2011)	 conducted	 an	 interesting	 study	 that	 examined	 the	 relationship	 between	 narcissism	 and	 behaviour	 on	 Facebook	 in	 275
adolescents.	They	measured	the	Age,	Gender	and	Grade	(at	school),	as	well	as	extroversion	and	narcissism.	They	also	measured	how
often	(per	week)	these	people	updated	their	Facebook	status	(FB_Status),	and	also	how	they	rated	their	own	profile	picture	on	each	of
four	dimensions:	coolness,	glamour,	fashionableness	and	attractiveness.	These	ratings	were	summed	as	an	indicator	of	how	positively
they	perceived	the	profile	picture	they	had	selected	for	their	page	(FB_Profile_TOT).	They	hypothesized	that	narcissism	would	predict,
above	and	beyond	the	other	variables,	the	frequency	of	status	updates,	and	how	positive	a	profile	picture	the	person	chose.	To	test	this,
they	conducted	two	hierarchical	regressions:	one	with	FB_Status	as	the	outcome	and	one	with	FB_Profile_TOT	as	the	outcome.	In	both
models	 they	entered	Age,	Gender	and	Grade	 in	 the	 first	block,	 then	added	extroversion	 (NEO_	FFI)	 in	a	 second	block,	 and	 finally
narcissism	 (NPQC_R)	 in	 a	 third	 block.	 The	 data	 from	 this	 study	 are	 in	 the	 file	Ong	 et	 al.	 (2011).sav.	 Labcoat	 Leni	wants	 you	 to
replicate	their	two	hierarchical	regressions	and	create	a	table	of	the	results	for	each.	Answers	are	on	the	companion	website	(or	look	at
Table	2	in	the	original	article).
ONG,	E.	Y.	L.,	ET	AL.	(2011).	PERSONALITY	AND	INDIVIDUAL	DIFFERENCES,	50(2),	180–185.

The	main	difference	will	 be	 a	 table	of	bootstrap	 confidence	 intervals	 for	 each	predictor	 and	 their
significance	value.19	These	 tell	 us	 that	 advertising,	b	=	0.09	 [0.07,	0.10],	p	 =	 .001,	 airplay,	b	 =	 3.37
[2.74,	4.02],	p	=	.001,	and	attractiveness	of	the	band,	b	=	11.09	[6.46,	15.01],	p	=	.001,	all	significantly
predict	album	sales.	Note	that	as	before,	the	bootstrapping	process	involves	re-estimating	the	standard
errors,	 so	 these	have	changed	 for	each	predictor	 (although	not	dramatically).	The	main	benefit	of	 the
bootstrap	 confidence	 intervals	 and	 significance	 values	 is	 that	 they	 do	 not	 rely	 on	 assumptions	 of
normality	or	homoscedasticity,	so	they	give	us	an	accurate	estimate	of	the	true	population	value	of	b	for
each	predictor.

OUTPUT	8.12



8.9.	How	to	report	multiple	regression	②

If	 your	model	has	 several	predictors	 then	you	can’t	 really	beat	 a	 summary	 table	 as	 a	 concise	way	 to
report	your	model.	As	a	bare	minimum,	 report	 the	betas,	 their	confidence	 interval,	 significance	value
and	 some	 general	 statistics	 about	 the	model	 (such	 as	 the	R2).	 The	 standardized	 beta	 values	 and	 the
standard	errors	are	also	very	useful.	Personally	I	like	to	see	the	constant	as	well	because	then	readers	of
your	work	can	construct	the	full	regression	model	if	they	need	to.	For	hierarchical	regression	you	should
report	these	values	at	each	stage	of	the	hierarchy.	So,	basically,	you	want	to	reproduce	the	table	labelled
Coefficients	from	the	SPSS	output	and	omit	some	of	the	non-essential	information.	For	the	example	in
this	chapter	we	might	produce	a	table	like	that	in	Table	8.2.

Look	back	 through	 the	SPSS	output	 in	 this	 chapter	 and	 see	 if	 you	 can	work	 out	 from	where	 the
values	came.	Things	to	note	are:	(1)	I’ve	rounded	off	to	2	decimal	places	throughout	because	this	is	a
reasonable	 level	 of	 precision	given	 the	variables	measured;	 (2)	 for	 the	 standardized	betas	 there	 is	 no
zero	before	the	decimal	point	(because	these	values	shouldn’t	exceed	1)	but	for	all	other	values	less	than
1	the	zero	is	present;	(3)	often	you’ll	see	that	the	significance	of	the	variable	is	denoted	by	an	asterisk
with	a	 footnote	 to	 indicate	 the	significance	 level	being	used,	but	 it’s	better	practice	 to	 report	exact	p-
values;	(4)	the	R2	for	the	initial	model	and	the	change	in	R2	(denoted	as	∆R2)	for	each	subsequent	step
of	the	model	are	reported	below	the	table;	and	(5)	in	the	title	I	have	mentioned	that	confidence	intervals
and	standard	errors	in	the	table	are	based	on	bootstrapping	–	this	information	is	important	for	readers	to
know.

TABLE	 8.2	 Linear	 model	 of	 predictors	 of	 album	 sales,	 with	 95%	 bias	 corrected	 and	 accelerated
confidence	 intervals	 reported	 in	parentheses.	Confidence	 intervals	 and	 standard	 errors	based	on	1000
bootstrap	samples



Note.	R2	=	.34	for	Step	1;	∆R2	=	.33	for	Step	2	(ps	<	.001).

LABCOAT	LENI’S	REAL	RESEARCH	8.2

Why	do	you	like	your	lecturers?	①
In	 the	 previous	 chapter	 we	 encountered	 a	 study	 by	 Chamorro-Premuzic	 et	 al.	 in	 which	 they	 measured	 students’	 personality
characteristics	 and	asked	 them	 to	 rate	how	much	 they	wanted	 these	 same	characteristics	 in	 their	 lecturers	 (see	Labcoat	Leni’s	Real
Research	7.1	for	a	full	description).	In	that	chapter	we	correlated	these	scores;	however,	we	could	go	a	step	further	and	see	whether
students’	personality	characteristics	predict	the	characteristics	that	they	would	like	to	see	in	their	lecturers.

The	 data	 from	 this	 study	 are	 in	 the	 file	 ChamorroPremuzic.sav.	 Labcoat	 Leni	 wants	 you	 to	 carry	 out	 five	multiple	 regression
analyses:	the	outcome	variable	in	each	of	the	five	analyses	is	the	ratings	of	how	much	students	want	to	see	neuroticism,	extroversion,
openness	to	experience,	agreeableness	and	conscientiousness.	For	each	of	these	outcomes,	force	age	and	gender	into	the	analysis	in	the
first	step	of	the	hierarchy,	then	in	the	second	block	force	in	the	five	student	personality	traits	(neuroticism,	extroversion,	openness	to
experience,	 agreeableness	 and	 conscientiousness).	 For	 each	 analysis	 create	 a	 table	 of	 the	 results.	 Answers	 are	 on	 the	 companion
website	(or	look	at	Table	4	in	the	original	article).
CHAMORRO-PREMUZIC,	T.,	et	al.	(2008).	PERSONALITY	AND	INDIVIDUAL	DIFFERENCES,	44,	965–976.

8.10.	Brian’s	attempt	to	woo	Jane	①

FIGURE	8.25	What	Brian	learnt	from	this	chapter



8.11.	What	next?	①

This	 chapter	 is	 possibly	 the	 longest	 book	 chapter	 ever	written,	 and	 if	 you	 feel	 like	 you	 aged	 several
years	while	reading	it	then,	well,	you	probably	have	(look	around,	there	are	cobwebs	in	the	room,	you
have	a	long	beard,	and	when	you	go	outside	you’ll	discover	a	second	ice	age	has	been	and	gone,	leaving
only	 you	 and	 a	 few	woolly	mammoths	 to	 populate	 the	 planet).	However,	 on	 the	 plus	 side,	 you	 now
know	more	or	less	everything	you	ever	need	to	know	about	statistics.	Really,	it’s	true;	you’ll	discover	in
the	coming	chapters	that	everything	else	we	discuss	is	basically	a	variation	of	this	chapter.	So,	although
you	may	be	near	death	having	spent	your	life	reading	this	chapter	(and	I’m	certainly	near	death	having
written	it)	you	are	officially	a	stats	genius	–	well	done!

We	started	 the	chapter	by	discovering	that	at	8	years	old	I	could	have	really	done	with	regression
analysis	to	tell	me	which	variables	are	important	in	predicting	talent	competition	success.	Unfortunately
I	 didn’t	 have	 regression,	 but	 fortunately	 I	 had	my	 dad	 instead	 (and	 he’s	 better	 than	 regression).	 He
correctly	predicted	 the	 recipe	 for	 superstardom,	but	 in	doing	 so	he	made	me	hungry	 for	more.	 I	was
starting	to	get	a	taste	for	the	rock-idol	lifestyle:	I	had	friends,	a	fortune	(well,	two	gold-plated	winner’s
medals),	fast	cars	(a	bike)	and	dodgy-looking	8-year-olds	were	giving	me	suitcases	full	of	lemon	sherbet
to	lick	off	of	mirrors.	The	only	things	needed	to	complete	the	job	were	a	platinum	selling	album	and	a
heroin	addiction.	However,	before	that	my	parents	and	teachers	were	about	to	impress	reality	upon	my



young	mind	…

8.12.	Key	terms	that	I’ve	discovered

Adjusted	predicted	value

Adjusted	R2

Autocorrelation
bi
βi
Cook’s	distance
Covariance	ratio	(CVR)
Cross-validation
Deleted	residual
DFBeta
DFFit
Dummy	variables
Durbin–Watson	test
F-ratio
Generalization
Goodness	of	fit
Hat	values
Heteroscedasticity
Hierarchical	regression
Homoscedasticity
Independent	errors
Leverage
Mahalanobis	distances
Mean	squares
Model	sum	of	squares
Multicollinearity
Multiple	r
Multiple	regression
Ordinary	least	squares	(OLS)
Outcome	variable
Perfect	collinearity
Predicted	value
Predictor	variable
Residual
Residualsum	of	squares
Shrinkage
Simple	regression
Standardized	DFBeta
Standardized	DFFit
Standardized	residuals
Stepwise	regression
Studentized	deleted	residuals
Studentized	residuals
Suppressor	effects



t-statistic
Tolerance
Total	sum	of	squares
Unstandardized	residuals
Variance	inflation	factor	(VIF)

8.13.	Smart	Alex’s	tasks

Task	1:	In	Chapter	3	(Task	6)	we	looked	at	data	based	on	findings	that	the	number	of	cups	of	tea
drunk	was	related	to	cognitive	functioning	(Feng	et	al.,	2010).	The	data	are	in	the	file	Tea	Makes
You	Brainy	716.sav.	Using	the	model	that	predicts	cognitive	functioning	from	tea	drinking,	what
would	cognitive	functioning	be	if	someone	drank	10	cups	of	tea?	Is	there	a	significant	effect?	①
Task	2:	Run	a	regression	analysis	for	the	pubs.sav	data	in	Jane	Superbrain	Box	8.1	predicting
mortality	from	the	number	of	pubs.	Try	repeating	the	analysis	but	bootstrapping	the	confidence
intervals.	②
Task	3:	In	Jane	Superbrain	Box	2.1	we	saw	some	data	(HonestyLab.sav)	relating	to	people’s
ratings	of	dishonest	acts	and	the	likeableness	of	the	perpetrator.	Run	a	regression	using
bootstrapping	to	predict	ratings	of	dishonesty	from	the	likeableness	of	the	perpetrator.	②
Task	4:	A	fashion	student	was	interested	in	factors	that	predicted	the	salaries	of	cat-walk	models.
She	collected	data	from	231	models.	For	each	model	she	asked	them	their	salary	per	day	on	days
when	they	were	working	(Salary),	their	age	(Age),	how	many	years	they	had	worked	as	a	model
(Years),	and	then	got	a	panel	of	experts	from	modelling	agencies	to	rate	the	attractiveness	of	each
model	as	a	percentage,	with	100%	being	perfectly	attractive	(Beauty).	The	data	are	in	the	file
Supermodel.sav.	Unfortunately,	this	fashion	student	bought	a	substandard	statistics	textbook	and
so	doesn’t	know	how	to	analyse	her	data.	 	Can	you	help	her	out	by	conducting	a	multiple
regression	to	see	which	variables	predict	a	model’s	salary?	How	valid	is	the	regression	model?	②
Task	5:	A	study	was	carried	out	to	explore	the	relationship	between	Aggression	and	several
potential	predicting	factors	in	666	children	who	had	an	older	sibling.	Variables	measured	were
Parenting_Style	(high	score	=	bad	parenting	practices),	Computer_	Games	(high	score	=	more
time	spent	playing	computer	games),	Television	(high	score	=	more	time	spent	watching
television),	Diet	(high	score	=	the	child	has	a	good	diet	low	in	harmful	additives),	and
Sibling_Aggression	(high	score	=	more	aggression	seen	in	their	older	sibling).	Past	research
indicated	that	parenting	style	and	sibling	aggression	were	good	predictors	of	the	level	of
aggression	in	the	younger	child.	All	other	variables	were	treated	in	an	exploratory	fashion.	The
data	are	in	the	file	Child	Aggression.sav.	Analyse	them	with	multiple	regression.	②
Task	6:	Repeat	the	analysis	in	Labcoat	Leni’s	Real	Research	8.1	using	bootstrapping	for	the
confidence	intervals.	What	are	the	confidence	intervals	for	the	regression	parameters?	①
Task	7:	Coldwell,	Pike,	and	Dunn	(2006)	investigated	whether	household	chaos	predicted
children’s	problem	behaviour	over	and	above	parenting.	From	118	families	they	recorded	the	age



and	gender	of	the	youngest	child	(Child_age	and	Child_	gender).	They	then	interviewed	the	child
about	their	relationship	with	their	mum	using	the	Berkeley	Puppet	Interview	(BPI),	which
measures	(1)	warmth/enjoyment	(Child_warmth),	and	(2)	anger/hostility	(Child_anger).	Higher
scores	indicate	more	anger/hostility	and	warmth/enjoyment,	respectively.	Each	mum	was
interviewed	about	their	relationship	with	the	child	resulting	in	scores	for	relationship	positivity
(Mum_pos)	and	relationship	negativity	(Mum_neg).	Household	chaos	(Chaos)	was	assessed
using	the	Confusion,	Hubbub,	and	Order	Scale.	The	outcome	variable	was	the	child’s	adjustment
(sdq):	the	higher	the	score,	the	more	problem	behaviour	the	child	is	reported	to	be	displaying.	The
data	are	in	the	file	Coldwell	et	al.	(2006).sav.	Conduct	a	hierarchical	regression	in	three	steps:	(1)
enter	child	age	and	gender;	(2)	add	the	variables	measuring	parent–child	positivity,	parent–child
negativity,	parent	–	child	warmth	and	parent–child	anger;	(3)	add	chaos.	Is	household	chaos
predictive	of	children’s	problem	behaviour	over	and	above	parenting?	③

Answers	can	be	found	on	the	companion	website.

8.14.	Further	reading
Baguley,	T.	(2012).	Serious	stats:	A	guide	to	advanced	statistics	for	the	behavioural	sciences.	Basingstoke:	Palgrave	Macmillan.
Bowerman,	B.	L.,	&	O’Connell,	R.	T.	(1990).	Linear	statistical	models:	An	applied	approach	(2nd	ed.).	Belmont,	CA:	Duxbury.	(This	text	is

only	for	the	mathematically	minded	or	postgraduate	students,	but	provides	an	extremely	thorough	exposition	of	regression	analysis.)
Miles,	J.	N.	V.,	&	Shevlin,	M.	(2001).	Applying	regression	and	correlation:	A	guide	for	students	and	researchers.	London:	Sage.	(This	is	an

extremely	readable	text	that	covers	regression	in	loads	of	detail	but	with	minimum	pain	–	highly	recommended.)

	

1	It	appears	that	even	then	I	had	a	passion	for	lowering	the	tone	of	things	that	should	be	taken	seriously.
2	I	have	a	very	grainy	video	of	this	performance	recorded	by	my	dad’s	friend	on	a	video	camera	the	size	of	a	medium-sized	dog	that	had	to
be	accompanied	at	all	times	by	a	‘battery	pack’	the	size	and	weight	of	a	tank	(see	Oditi’s	Lantern).
3	In	case	you’re	interested,	by	standardizing	b,	as	we	do	when	we	compute	a	correlation	coefficient,	we’re	estimating	b	for	standardized
versions	of	the	predictor	and	outcome	variables	(i.e.,	versions	of	these	variables	that	have	a	mean	of	0	and	standard	deviation	of	1).	In	this
situation	b0	drops	out	of	the	equation	because	it	is	the	value	of	the	outcome	when	the	predictor	is	0,	and	when	the	predictor	and	outcome
are	standardized	then	when	the	predictor	is	0,	the	outcome	(and	hence	b0)	will	be	0	also.
4	For	example,	you’ll	sometimes	see	equation	(8.1)	written	as	Yi	=	(β0	+	β1Xi)	+	εi.	The	only	difference	is	that	this	equation	has	βs	in	it
instead	of	bs.	Both	versions	are	the	same	thing,	they	just	use	different	letters	to	represent	the	coefficients.
5	This	is	the	correlation	between	the	green	dots	and	the	blue	dots	in	Figure	8.4.	With	only	one	predictor	in	the	model	this	value	will	be	the
same	as	the	Pearson	correlation	coefficient	between	the	predictor	and	outcome	variable.
6	When	the	model	contains	more	than	one	predictor,	people	sometimes	refer	to	R2	as	multiple	R2.	This	is	another	example	of	how	people
attempt	 to	 make	 statistics	 more	 confusing	 than	 it	 needs	 to	 be	 by	 referring	 to	 the	 same	 thing	 in	 different	 ways.	 The	 meaning	 and
interpretation	of	R2	are	the	same	regardless	of	how	many	predictors	you	have	in	the	model	or	whether	you	choose	to	call	it	multiple	R2:	it
is	the	squared	correlation	between	values	of	the	outcome	predicted	by	the	model	and	the	values	observed	in	the	data.
7	You	may	come	across	the	average	leverage	denoted	as	p/n	 in	which	p	 is	 the	number	of	parameters	being	estimated.	In	regression,	we
estimate	parameters	for	each	predictor	and	also	for	a	constant	and	so	p	is	equivalent	to	the	number	of	predictors	plus	one	(k	+	1).
8	The	value	of	b1	 is	 reduced	because	 the	data	no	 longer	have	a	perfect	 linear	 relationship	and	so	 there	 is	now	variance	 that	 the	model
cannot	explain.
9	Some	authors	refer	to	these	external	variables	as	part	of	an	error	term	that	includes	any	random	factor	in	the	way	in	which	the	outcome
varies.	 However,	 to	 avoid	 confusion	 with	 the	 residual	 terms	 in	 the	 regression	 equations	 I	 have	 chosen	 the	 label	 ‘external	 variables’.
Although	this	term	implicitly	washes	over	any	random	factors,	I	acknowledge	their	presence	here.
10	I	used	the	program	G*Power,	mentioned	in	Section	2.6.1.7,	to	compute	these	values.
11	 I	 might	 cynically	 qualify	 this	 suggestion	 by	 proposing	 that	 predictors	 be	 chosen	 based	 on	 past	 research	 that	 has	 utilized	 good
methodology.	 If	 basing	 such	 decisions	 on	 regression	 analyses,	 select	 predictors	 based	 only	 on	 past	 research	 that	 has	 used	 regression
appropriately	and	yielded	reliable,	generalizable	models.



12	Hirotsugu	Akaike	(pronounced	‘A-ka-ee-kay’)	was	a	Japanese	statistician	who	gave	his	name	to	the	AIC,	which	is	used	in	a	huge	range
of	different	places.
13	We	can	see	that	although	the	data	are	messy	in	places,	the	three	predictors	have	reasonably	linear	relationships	with	the	outcome	(album
sales)	and	there	are	no	obvious	outliers.
14	That	is,	33%	=	66.5%	-	33.5%	(this	value	is	the	R	Square	Change	in	the	table).
15	To	get	the	same	values	as	SPSS	we	have	to	use	the	exact	value	of	R2,	which	is	0.3346480676231	(if	you	don’t	believe	me	double-click
on	the	table	in	the	SPSS	output	that	reports	this	value,	then	double-click	on	the	cell	of	the	table	containing	the	value	of	R2	and	you’ll	see
that	.335	becomes	the	value	just	mentioned).
16	The	more	precise	value	is	0.664668.
17	To	spare	your	eyesight	I	have	split	this	part	of	the	output	into	two	tables;	however,	it	should	appear	as	one	long	table	in	the	SPSS	viewer.
18	For	all	of	these	predictors	I	wrote	t(196).	The	number	in	brackets	is	the	degrees	of	freedom.	We	saw	in	Section	8.2.5	that	in	regression
the	degrees	of	freedom	are	N	−	p	−	1,	where	N	is	the	total	sample	size	(in	this	case	200)	and	p	is	the	number	of	predictors	(in	this	case	3).
For	these	data	we	get	200	−	3	−	1	=	196.
19	Remember	that	because	of	how	bootstrapping	works	the	values	in	your	output	will	be	slightly	different	than	mine,	and	different	again	if
you	rerun	the	analysis.
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