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Gut tman (1945) derived six different types of coefficients and showed that each was a 
lower bound to reliability defined as the ratio of true score variance to observed score 
variance. Gut tman ' s  formulas for the lower bounds (in population notation) are given 
below: 

X I = 1 - -  j=l ( l )  

X 2 = X l  + ~ F :  (2) 

k3 -- n kl (3) 
n - -  1 

X4 2 [1 a, + ~r = 2 (4) 
0" x 

N s =  hi + 2 ~ 2  (5) 
2 

0" x 

X 6 =  I - - j= l  (6) 
.2x 

In the formulas a2x is the variance of the observed scores on the composite measure; o,2 is 
the variance of a single item j; F2 is the sum of the squares of the covariances between 
items, a sum which includes n(n - 1) terms; a~ is the variance of observed scores from 
one part or "ha l f "  of the composite and a~, is the variance of the remaining part or half of 
the composite; F2 is the sum of the squares of the covariances of one particular item with 
the remaining n - 1 items, for whichever item gives the largest such sum; e 2 is the 
variance of the errors of estimate of item j from its linear multiple regression on the 
remaining n - 1 items. 

Gut tman  showed that: 

~, <X3--<~2 (7) 
Since ~,~ is always less than both 2"2 and ~3, it is also always an underestimate of 
reliability. Since ~2 is sometimes greater than ?~3, it follows that it could be a more 
accurate reliability lower bound than ~.3, but would never be less accurate than 2,3. 
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The k4 coefficient requires special discussion because, although there is only a single 
formu-]-a-a, it defines a whole family of coefficients. Each is a lower bound to p~x, but can be 
defined by a different allocation of the n items to part "a"  and part " b ' .  The common 
interpretation of k4 is that it would be a split-half reliability coefficient, such as could be 
defined by putting n/2  items in part "a"  and the remaining n/2  items in part "b." But it 
is not necessary that the two parts have the same number of items in order for k4 to be a 
lower bound to P~T. Gut tman pointed out that no assumption of parallelism or 
equivalence of the two parts was necessary in order for a n y  k4 to be a lower bound. Thus it 
is not necessary for the two parts to have the same variance. 

Gut tman concluded that k, would be a particularly useful lower bound because some 
splits could be larger than others. By finding a split with a larger k4, reliability would be 
more accurately "lower bounded." He commented that it was frequently easy to find k 4 
splits which gave better lower bounds than k3 or k2. The best internal consistency 
reliability estimate would be found by computing every possible lower bound, including 
every possible split coefficient, and using the largest. Computational effort would seem to 
be the only limiting factor, provided one has a population variance/covariance matrix. 

The formula for Gut tman 's  k~ lower bound is the same as that for two better known 
reliability coefficients, namely the Kuder-Richardson formula 20 and Cronbach's 
Coefficient Alpha. Cronbach (1951) demonstrated that there was a relationship between 
Coefficient Alpha and the possible split-half coefficients. Coefficient Alpha would be 
equal to the mean of all possible split-half coefficients. In Gut tman 's  notation we would 
have that: 

k~ = E (X,) (8) 

Novick and Lewis (1967) derived the conditions under which k4 and ,~3 would actually 
be equal to reliability. The necessary and sufficient condition for: 

k~ = k,4 = k2 = P~T (9) 

is that all items must be "essentially tau-equivalent." This means that every person's true 
score on one item must differ from his true score on another item by an additive constant. 
It implies some important constraints on the true score, error score, and observed score 
covariance matrices. The entries in the item true score variance/covariance matrix must 
all be equal, since all item true scores would be perfectly correlated. The item error 
variances, however, need not  all be equal. The item error covariances would all be 
assumed to be zero, following the usual classical assumptions. Thus the observed score 
variance/covariance matrix has possibly differing variance elements, but all covariances 
must be equal. Item means could also differ from one another. Thus, the circumstance in 
which there would be some k4 greater than k3 is when the population observed item 
covariances are not all equal. This would seem to be a common state of affairs. 

Jackson and Agunwamba (1977) have given a mathematical analysis of Gut tman 's  
lower bounds, ,k, through k6, in terms of the population covariance matrix properties that 
would lead to one coefficient being larger than another. With regard to the ~x 4 split-half 
coefficient, only one of the possible split-halves was considered of interest, namely the one 
which would give the largest k4 value. In treating the k4 coefficient, they did not require 
that the two halves have an equal number of items. Maximum h 4 w a s  the largest from 
among the 2" ~ possible allocations of items into two parts. A new greatest lower bound 
(g. 1. b.) was developed and shown to be a lower bound to reliability which would be as 
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large as the greatest of all of Guttman's lower bounds, including the largest k4. The 
analysis of the differences in lower bounds as related to covariance matrix properties led 
Jackson and Agunwamba to conclude that unless the population covariance matrix has 
very special properties, unlikely to be encountered in practice, maximum ~.4 is the only 
one which may actually be the greatest lower bound. There is no simple formula for 
finding the g. 1. b., rather it must be found by a computer search procedure which was 
described in a companion paper by Woodhouse and Jackson (1977). After computing the 
g. 1. b. and other lower bounds on actual test data, Woodhouse and Jackson concluded 
that the maximum split-half k4 was a considerable improvement over k3 and ~2, while the 
gain in going to the g. 1. b. from maximum ~.4 was fairly modest. It was also mentioned 
that for numbers of subtests (parts) up to 17, less time was required to compute the 
largest h4 than to compute the g. 1. b. A caution was given about using the bounds safely 
with sample covariance matrices computed from the scores of a modest number of 
persons, because of the lack of knowledge of sampling characteristics. The authors 
seemed to doubt that the sampling distributions would be easily obtained mathematically 
and indicated that simulation would be necessary to study sampling bias and 
variance. 

Callender and Osburn (1977a) have reported a method, called MSPLIT, to determine 
a !arg e split-half L4 without having to compute every possible split coefficient. This is 
increasingly advantageous computationally as the number of items increases. When 
applied to actual test data with 10 items per test, it was found that on the average the 
MSPLIT L4 was only about .02 smaller than the largest split-half L4. The MSPLIT L4's 
were considerably larger than the L3 and odd-even split L 4 coefficients. 

THE SAMPLING PROBLEM FOR MAXIMIZED COEFFICIENTS 

The problems that arise when sample values are maximized to estimate population 
parameters are well known and typically result in overestimation. One would expect 
therefore that sample values of the g. 1. b., maximized L4's, and L6 would tend to 
overestimate their respective population counterparts. Further, if that population 
counterpart itself is a "good" lower bound, it may be that actual population reliability 
could be overestimated by the maximized sample coefficient. Maximized population 
coefficients do not have this problem because there is no sampling variance to confound. 
Obviously there is a real problem which must be overcome in order for the maximized 
coefficients to find application on anything other than giant samples which could be 
regarded as "the population." There are two issues which might be dealt with: the "bias" 
issue, or how can a sample coefficient be adjusted in order to correctly estimate its 
population counterpart, and the "accuracy" issue, or how can sample coefficients be 
treated in order to correctly estimate the population reliability or the greatest population 
lower bound? 

EMPIRICAL STUDY OF MSPLIT COEFFICIENTS:  
OBJECTIVES AND METHOD 

An empirical study of MSPLIT maximized split-half L4's was undertaken to assess the 
degree of overestimation due to capitalization on sampling error and to investigate 
methods of handling it. Another issue of interest was to determine how much better 
accuracy might result from using MSPLIT coefficients instead of L2 o r  L 3. The latter 
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coefficients do not require computer resources. If accuracy were to increase only in the 
third decimal place, we 
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Table 1 

P o p u l a t i o n  and Sample R e l i a b i l i t y  C o e f f i c i e n t s  
for 10-1tem Tests 

Mean of I0 Mean of 20 Mean of 20 
Population Total Sample Original Sample Holdout Sample 
Coefficient Coefficients Coefficients Coefficients 

(N=380) (N=IO0) (N=50) (N=50) 
TEST 10-1 

Largest L 4 .235 .367 .467 
MSPLIT L 4 .222 .341 .424 .028 
L 2 .151 .182 .209 
L 3 .127 .093 .080 

TEST 10-2 
Largest L 4 .279 .391 .494 
MSPLIT L 4 .279 .363 .449 .109 
L 2 .174 .203 .231 
L 3 .146 .120 .111 

TEST 10-3 
Largest L 4 .381 .501 .575 
MSPLIT L 4 .337 .474 .554 .225 
L 2 .286 .335 .362 
L 3 .261 .270 .263 

TEST 10-4 
Largest L 4 .478 .615 .673 
MSPLIT L 4 .478 .595 .646 .445 
L 2 .390 .463 .479 
L 3 .372 .417 .414 

TEST 10-5 
Largest L 4 .541 .590 .658 
MSPLIT L 4 .541 .564 .601 .401 
L 2 .426 .415 .421 
I, 3 .412 .365 .342 

TEST 10-6 
Largest L 4 .661 .716 .749 
MSPLIT L 4 .652 .700 .723 .571 
L 2 .591 .575 .579 
L 3 .587 .547 .532 

TEST 10-7 
Largest L 4 .709 .748 .789 
MSPLIT L 4 .705 .735 .774 .648 
L 2 .655 .652 .659 
L 3 .651 .638 .634 

TEST 10-8 
Largest I, 4 .724 .775 .802 
MSPLIT L 4 .697 .764 .772 .683 
L 2 .673 .675 .674 
L 3 .669 .661 .650 

TEST 10-9 
Largest L 4 .759 .795 .825 
MSPLIT L 4 .752 .775 .805 .691 
L 2 .707 .684 .689 
L 3 .699 .661 .654 
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Table 2 

Populat ion and Sample R e l i a b i l i t y  C o e f f i c i e n t s  
for  40-Item Tests  

Mean of i0 Mean of 20 Mean of 20 
Population Total Sample Original Sample Holdout Sample 
Coefficient Coefficients Coefficients Coefficients 

(N=380) (N=100) (N=50) (N=50) 

TEST 40-1 
MSPLIT L 4 .672 .802 .848 .600 
L 2 .550 .578 .591 
L 3 .531 .534 .527 

TEST 40-2 
HSPLIT L 4 .834 .890 .917 .780 
L 2 .767 .769 .774 
L 3 .762 .752 .746 

TEST 4O-3 
MSPLIT L 4 .905 .943 .956 .888 
L 2 .866 .870 .872 
L 3 .864 .864 .861 

in Table I it will be noted that the MSPLIT and largest L4 coefficients of the total 
samples exceed those of the population, and those of the original samples further exceed 
those of the total samples. A reduction of the MSPLIT coefficients in the holdout 
samples is apparent. The conclusions based on Table 1 are also applicable to Table 2, 
except that the largest split-half coefficients were not obtained. 

At first look it was surprising to find that the shrinkage of the MSPLIT L4's brought 
them so far down as to be comparable to the L 3 coefficients. This is like falling from the 
top of the distribution of L4's down to about the middle. Why should this occur? A little 
reflection on what was happening as a result of the maximization process provided a 
rationale for better use of the original and holdout sample MSPLIT L4's. Suppose that in 
the population there is a largest split-half ~.4 and we happen to know what allocation of 
items would produce it. if we had this knowledge and a sample of data for computing 
reliability, we should allocate the items in the same manner as in the population in 
computing the sample L4. We might very well expect such a coefficient to be a relatively 
unbiased estimator of that largest X4 across several samples, in reality, we do not know 
what allocation of items this would be, so we divide our sample and apply MSPLIT to one 
subsample. This does two things for (or to) us. First, because we have added random 
sampling error to the covariances, we find that MSPLIT maximizes some of it and gives 
us an L4 coefficient that is larger than what we would have obtained if we had used the 
"correct" allocation of items from the population. Second, we have come to the wrong 
conclusion about which allocation to use. Now we apply that "wrong" allocation of items 
to the other subsample. There is no addition of sampling variation to the cross-validated 
L4 value in that sample because no maximizing was done on it. Furthermore, since we are 
using the "wrong" allocation of items, we find that the L4 coefficient is actually less than 
the L4 we would have obtained if we had used the correct allocation of items. 

Thus we find that original sample MSPLIT L4's tend to be biased high relative to the 
L4 for the correct population maximized ~.4, and that holdout sample MSPLIT L4's are 

biased low relative to it. It seemed plausible that a better estimator of the largest 
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population X4 might be obtained by averaging the four MSPLIT  L 4 coefficients, where 
two are maximized original samples and the other two are holdout sample coefficients. 
The resulting mean coefficient will be referred to as the " M S P L I T  estimator" of 
reliability. The issue we now turn to is that of the accuracy of the M S P L | T  estimator, 
total sample L2, and total sample L3 as competing sample reliability estimators. 

Because the covariance matrices were not simulated to produce a known true 
reliability, we cannot compare the various sample coefficients with it as a measure of 
accuracy. However, we can make an analysis of accuracy relative to the greatest 
computed population lower bound. A coefficient which more accurately estimates that 
value would also be a more accurate estimator of the population true reliability. In the 
case of the I 0-item tests we use the largest population X4 as the standard. For the 40-item 
tests, the standard is the MSPLIT population X4. 

In studying the bias or sampling variation of statistical indices, the ideal situation is to 
have a very large number of samples, each of relatively small size. But how many samples 
are needed? We found that the results were very consistent after drawing just 10 
samples. As a check on how well the sample results might be agreeing with what would be 
expected from an infinite number of samples, we compared the mean of the sample L 3 

coefficients with their expected values based on the population h3. Table 3 shows that the 
mean L3 coefficients were within - . 0 5 8  to +.035 of the expected value after 10 samples. 
The expected value of the L2 coefficients and the MSPLIT  estimator could not be 
computed directly, since no formula yet exists for this purpose. However, it was possible 
to make an empirically based projection of their expected value. For each test, the 
relative positions of the MS P LIT  estimator, L2, and L 3 w e r e  remarkably constant across 
samples. If one went up, so did the other two. As a check on this consistency it was found 
that the regression of the MSPLIT estimator on  L 3 and the regression of L2 on L~ across 
samples were statistically significant at .05 level or better for every test. This provided a 
way of projecting the expected value of the M S P LIT  estimator and L2 coefficient for 
each test. It is reasonable to conclude that, if the L3's averaged out to something less than 

Table 3 

Comparison o f  Observed Mean and Expected V a l u e  
of Total Sample L 3 Coefficients 

Difference Between 
Expected Value Mean of i0 Expected Value and 

Population of Total Sample Total Sample Mean of Total 
Test ~3 L3's L3's Sample L3's 

I0-i .127 .Ii0 
10-2 .146 .129 
10-3 .261 ,246 
10-4 .372 .359 
10-5 .412 .400 
10-6 .587 .579 
10-7 .651 .644 
10-8 .669 .662 
10-9 .699 .693 
40-I .531 .522 
40-2 .762 .757 
40-3 ,864 .861 

.093 *.017 

.120 *.009 
270 -.024 
417 -.058 
365 *.035 
547 *.032 
638 +.006 
661 +.001 
661 *.032 
534 -.012 
752 *.005 
864 -.003 
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Figure 1. Difference between long-run projected mean of total sample estimators and 
largest population split-half coefficient in lO-item tests. 

their expected value due to chance sampling error, the MSPLIT estimator and L2 
coefficients were also lower than their expected value. By simply substituting the 
expected value of L3 into the regressions of the MSPLIT estimator and L 2 on  L3, we 
obtained a projection of the expected value of those coefficients. In going from results 
based on 10 samples to projected results based on an infinite number of samples, it must 
be recognized that only small adjustments wece made. This is so because the adjustments 
were based on the small differences between observed m e a n  L3's and their expected value 
reported in Table 3. It must also be recognized that relative differences among the three 
kinds of coefficients were maintained by the adjustment procedure. 

The difference between the long-run projected mean of each type of sample estimator 
and the largest population split-half coefficient is shown in Figure 1 for the 10-item tests. 
Figure 2 provides similar information regarding the 40-item tests, except that the 
difference is computed between the long-run expected means and the MSPLIT 
population split-half coefficient. 

Figures I and 2 show that the largest split-half coefficient (and hence the population 
reliability) is more accurately estimated by computing the MSPLIT estimator than by 
computing sample L 2 o r  L 3 coefficients. This conclusion is supported for either a large or 
a small number of items and for a wide range of test reliability. For 40-item tests, the 
MSPLIT population coefficient was consistently overestimated by a small amount. Of 
course, this does not necessarily imply that the population reliability was overestimated, 
since the MSPLIT population coefficient may not have been the largest ~4. The 
inaccuracy of L~ (Coefficient Alpha) is rather striking, with reliability underestimated 
by more than.  1 for several tests. As L3 increases in Figures 1 and 2, there is a tendency 
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Figure 2. Difference between long-run projected mean of total sample estimators and 
MSPLIT population split-half coefficient in 40-item tests. 

for the discrepancy between it and the maximized population split-half coefficient to be 
reduced. This may result from the fact that as L3 (the average split-half coefficient) 
approaches 1.0, there is a necessary reduction in the possible discrepancy between L3 and 
the largest split-half coefficient. 

The standard deviation over the 10 samples of L3 (Coefficient Alpha), Gut tman 's  L2, 
and the MSPLIT estimator is shown in Figure 3 for each test. The sampling variation of 
the three estimators is similar, except that the MSPLIT estimator was slightly less 
variable in the 40-item tests. The degree of sampling variation in the low reliability tests 
was rather great, indicating that with a sample size of only N = 100, any of the sample 
estimators has a high probability of missing the population reliability by a large 
amount. 

C O N C L U S I O N S  

The MSPLIT estimator was clearly a better estimator of reliability than the usual L 3 

or L2. It effectively overcame the problem of capitalization on sampling variation, even 
on very small sample sizes. With these data, the absolute magnitude of the underestima- 
tion of reliability by L~ was so large as to give one pause over the kind of error that could 
result from having used it. For example, substantial amounts of overcorrection for 
attenuation could have resulted if L3 had been used instead of the MSPLIT  estimator. 
Internal consistency reliabilities may also be used in order to infer the power of an 
experiment or of a statistic. Use of an underestimate of reliability would result in an 
underestimation of power. 

We think that there are several additional kinds of research that would be interesting 
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Figure 3. Efficiency of sample  est imators.  

and informative. One comparison would be to simulate population covariance structures 
of known reliability that are not essentially tau-equivalent. Sample MSPLIT estimators 
could then be compared with the true reliability. We already know that the MSPLIT 
estimator is more accurate than L2 and L3 coefficients relative to true reliability, but we 
don't know the absolute magnitude of the difference between the MSPLIT estimator and 
true reliability. 

Simulation studies could also be used to explore the sampling distribution of MSPLIT 
estimators relative to other reliability coefficients on non-essentially tau-equivalent data. 
The present study did not contain a sufficient number of samples to draw firm 
conclusions on this matter. 

Finally, we note that a program for computing and cross-validating MSPLIT 
coefficients is available (Callender & Osburn, 1977b). 
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