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One possible reason for the continued neglect of statistical power analysis in research in the
behavioral sciences is the inaccessibility of or difficulty with the standard material. A convenient,
although not comprehensive, presentation of required sample sizes is provided here. Effect-size
indexes and conventional values for these are given for operationally defined small, medium, and
large effects. The sample sizes necessary for .80 power to detect effects at these levels are tabled for
eight standard statistical tests: (a) the difference between independent means, (b) the significance
of a product-moment correlation, (c) the difference between independent rs, (d) the sign test, (e) the
difference between independent proportions, (f) chi-square tests for goodness of fit and contin-
gency tables, (g) one-way analysis of variance, and (h) the significance of a multiple or multiple
partial correlation.

The preface to the first edition of my power handbook (Co-
hen, 1969) begins:

During my first dozen years of teaching and consulting on applied
statistics with behavioral scientists, 1 became increasingly im-
pressed with the importance of statistical power analysis, an im-
portance which was increased an order of magnitude by its neglect
in our textbooks and curricula. The case for its importance is
easily made: What behavioral scientist would view with equanim-
ity the question of the probability that his investigation would
lead to statistically significant results, i.e., its power? (p. vii)

This neglect was obvious through casual observation and had
been confirmed by a power review of the 1960 volume of the
Journal of Abnormal and Social Psychology, which found the
mean power to detect medium effect sizes to be .48 (Cohen,
1962). Thus, the chance of obtaining a significant result was
about that of tossing a head with a fair coin. I attributed this
disregard of power to the inaccessibility of a meager and mathe-
matically difficult literature, beginning with its origin in the
work of Neyman and Pearson (1928,1933).

The power handbook was supposed to solve the problem. It
required no more background than an introductory psychologi-
cal statistics course that included significance testing. The ex-
position was verbal-intuitive and carried largely by many
worked examples drawn from across the spectrum of behav-
ioral science.

In the ensuing two decades, the book has been through re-
vised (1977) and second (1988) editions and has inspired dozens
of power and effect-size surveys in many areas of the social and
life sciences (Cohen, 1988, pp. xi-xii). During this period, there
has been a spate of articles on power analysis in the social
science literature, a baker's dozen of computer programs (re-
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viewed in Goldstein, 1989), and a breakthrough into popular
statistics textbooks (Cohen, 1988, pp. xii-xiii).

Sedlmeier and Gigerenzer (1989) reported a power review of
the 1984 volume of the Journal of Abnormal Psychology (some
24 years after mine) under the title, "Do Studies of Statistical
Power Have an Effect on the Power of Studies?" The answer
was no. Neither their study nor the dozen other power reviews
they cite (excepting those fields in which large sample sizes are
used, e.g., sociology, market research) showed any material im-
provement in power. Thus, a quarter century has brought no
increase in the probability of obtaining a significant result.

Why is this? There is no controversy among methodologists
about the importance of power analysis, and there are ample
accessible resources for estimating sample sizes in research
planning using power analysis. My 2-decades-long expectation
that methods sections in research articles in psychological jour-
nals would invariably include power analyses has not been real-
ized. Indeed, they almost invariably do not. Of the 54 articles
Sedlmeier and Gigerenzer (1989) reviewed, only 2 mentioned
power, and none estimated power or necessary sample size or
the population effect size they posited. In 7 of the studies, null
hypotheses served as research hypotheses that were confirmed
when the results were nonsignificant. Assuming a medium ef-
fect size, the median power for these tests was .25! Thus, these
authors concluded that their research hypotheses of no effect
were supported when they had only a .25 chance of rejecting
these null hypotheses in the presence of substantial population
effects.

It is not at all clear why researchers continue to ignore power
analysis. The passive acceptance of this state of affairs by edi-
tors and reviewers is even more of a mystery. At least part of the
reason may be the low level of consciousness about effect size: It
is as if the only concern about magnitude in much psychologi-
cal research is with regard to the statistical test result and its
accompanying p value, not with regard to the psychological
phenomenon under study. Sedlmeier and Gigerenzer (1989) at-
tribute this to the accident of the historical precedence of Fi-
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sherian theory, its hybridization with the contradictory Ney-
man-Pearson theory, and the apparent completeness of Fisher-
ian null hypothesis testing: objective, mechanical, and a clear-
cut go-no-go decision straddled over p = .05.1 have suggested
that the neglect of power analysis simply exemplifies the slow
movement of methodological advance (Cohen, 1988, p. xiv),
noting that it took some 40 years from Student's publication of
the / test to its inclusion in psychological statistics textbooks
(Cohen, 1990, p. 1311).

An associate editor of this journal suggests another reason:
Researchers find too complicated, or do not have at hand, ei-
ther my book or other reference material for power analysis. He
suggests that a short rule-of-thumb treatment of necessary sam-
ple size might make a difference. Hence this article.

In this bare bones treatment, I cover only the simplest cases,
the most common designs and tests, and only three levels of
effect size. For readers who find this inadequate, I unhesitat-
ingly recommend Statistic Power Analysis for the Behavioral
Sciences (Cohen, 1988; hereafter SPABS). It covers special cases,
one-sided tests, unequal sample sizes, other null hypotheses, set
correlation and multivariate methods and gives substantive ex-
amples of small, medium, and large effect sizes for the various
tests. It offers well over 100 worked illustrative examples and is
as user friendly as I know how to make it, the technical material
being relegated to an appendix.

Method

Statistical power analysis exploits the relationships among the four
variables involved in statistical inference: sample size (N), significance
criterion (ft), population effect size (ES), and statistical power. For any
statistical model, these relationships are such that each is a function of
the other three. For example, in power reviews, for any given statistical
test, we can determine power for given a, N, and ES. For research
planning, however, it is most useful to determine the N necessary to
have a specified power for given a and ES; this article addresses
this use.

The Significance Criterion, a

The risk of mistakenly rejecting the null hypothesis (H) and thus of
committing a Type I error, a, represents a policy: the maximum risk
attending such a rejection. Unless otherwise stated (and it rarely is), it is
taken to equal .05 (part of the Fisherian legacy; Cohen, 1990). Other
values may of course be selected. For example, in studies testing sev-
eral fys, it is recommended that a - .01 per hypothesis in order that the
experimentwise risk (i.e., the risk of any false rejections) not become
too large. Also, for tests whose parameters may be either positive or
negative, the a risk may be defined as two sided or one sided. The many
tables in SPABS provide for both kinds, but the sample sizes provided
in this note are all for two-sided tests at a = .01, .05, and. 10, the last for
circumstances in which a less rigorous standard for rejection is de-
sired, as, for example, in exploratory studies. For unreconstructed one
tailers (see Cohen, 1965), the tabled sample sizes provide close approxi-
mations for one-sided tests at Via (e.g., the sample sizes tabled under a =
.10 may be used for one-sided tests at a = .05).

Power

The statistical power of a significance test is the long-term probabil-
ity, given the population ES, a, and TV of rejecting /&. When the ES is
not equal to zero, H, is false, so failure to reject it also incurs an error.

This is a Type II error, and for any given ES, a, and N, its probability of
occurring is ft. Power is thus 1 - 0, the probability of rejecting a false H,.

In this treatment, the only specification for power is .80 (so /3 = .20), a
convention proposed for general use. (SPABS provides for 11 levels of
power in most of its N tables.) A materially smaller value than .80
would incur too great a risk of a Type II error. A materially larger value
would result in a demand for N that is likely to exceed the investigator's
resources. Taken with the conventional a = .05, powerof .80 results in a
0M ratio of 4:1 (.20 to .05) of the two kinds of risks. (See SPABS, pp.
53-56.)

Sample Size

In research planning, the investigator needs to know the N neces-
sary to attain the desired power for the specified a and hypothesized
ES. A'increases with an increase in the power desired, a decrease in the
ES, and a decrease in a. For statistical tests involving two or more
groups, Nas here denned is the necessary sample size for each group.

Effect Size

Researchers find specifying the ES the most difficult part of power
analysis. As suggested above, the difficulty is at least partly due to the
generally low level of consciousness of the magnitude of phenomena
that characterizes much of psychology. This in turn may help explain
why, despite the stricture of methodologists, significance testing is so
heavily preferred to confidence interval estimation, although the wide
intervals that usually result may also play a role (Cohen, 1990). How-
ever, neither the determination of power or necessary sample size can
proceed without the investigator having some idea about the degree to
which the H, is believed to be false (i.e., the ES).

In the Neyman-Pearson method of statistical inference, in addition
to the specification of HQ, an alternate hypothesis (//,) is counterpoised
against fy. The degree to which H> is false is indexed by the discrep-
ancy between H, and //, and is called the ES. Each statistical test has its
own ES index. All the indexes are scale free and continuous, ranging
upward from zero, and for all, the /^ is that ES = 0. For example, for
testing the product-moment correlation of a sample for significance,
the ES is simply the population r, so H posits that r = 0. As another
example, for testing the significance of the departure of a population
proportion (P) from .50, the ES index isg= P— .50, so the H, is that g=
0. For the tests of the significance of the difference between indepen-
dent means, correlation coefficients, and proportions, the H is that the
difference equals zero. Table 1 gives for each of the tests the definition
of its ES index.

To convey the meaning of any given ES index, it is necessary to have
some idea of its scale. To this end, I have proposed as conventions or
operational definitions small, medium, and large values for each that
are at least approximately consistent across the different ES indexes.
My intent was that medium ES represent an effect likely to be visible to
the naked eye of a careful observer, (ft has since been noted in effect-
size surveys that it approximates the average size of observed effects in
various fields.) I set small ES to be noticeably smaller than medium but
not so small as to be trivial, and I set large ES to be the same distance
above medium as small was below it. Although the definitions were
made subjectively, with some early minor adjustments, these conven-
tions have been fixed since the 1977 edition of SPABS and have come
into general use. Table 1 contains these values for the tests considered
here.

In the present treatment, the H,s are the ESs that operationally de-
fine small, medium, and large effects as given in Table 1. For the test of
the significance of a sample r, for example, because the ES for this test
is simply the alternate-hypothetical population r, small, medium, and
large ESs are respectively .10, .30, and .50. The ES index for the t test of
the difference between independent means is d, the difference
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Table 1
ES Indexes and Their Values for Small, Medium, and Large Effects

1.

2.

3.

4.

5.

6.

7.

8.

Test ES index

mA vs. mB for , mA — mB

independent a

means
Significance r
of product-
moment r
rA vs. rB for q = ZA - ZB where z = Fisher's z
independent
rs
P = .5 and £ = P - .50
the sign test
PA vs. PB for h = <t>A — <t>B where 0 = arcsine
independent transformation
proportions ,
Chi-square , /^ (/>„ - P0/)

2

for goodness \ / £ p
of fit and V
contingency
One-way ,_ £„,
analysis of J

 a

variance
Multiple and f2 R2

multiple J \ - R2

partial
correlation

Small

.20

.10

.10

.05

.20

.10

.10

.02

Effect size

Medium

.50

.30

.30

.15

.50

.30

.25

.15

Large

.80

.50

.50

.25

.80

.50

.40

.35

Note. ES = population effect size.

expressed in units of (i.e., divided by) the within-population standard
deviation. For this test, the /& is that d= 0 and the small, medium, and
large ESs (or H,s) are d - .20, .50, and .80. Thus, an operationally
defined medium difference between means is half a standard devia-
tion; concretely, for IQ scores in which the population standard devia-
tion is 15, a medium difference between means is 7.5 IQ points.

Statistical Tests

The tests covered here are the most common tests used in
psychological research:

1. The t test for the difference between two independent
means, with df= 2 (N- 1).

2. The / test for the significance of a product-moment corre-
lation coefficient r, with df= N- 2.

3. The test for the difference between two independent rs,
accomplished as a normal curve test through the Fisher z trans-
formation of r (tabled in many statistical texts).

4. The binomial distribution or, for large samples, the nor-
mal curve (or equivalent chi-square, 1 df) test that a population
proportion (P) = .50. This test is also used in the nonparametric
sign test for differences between paired observations.

5. The normal curve test for the difference between two inde-
pendent proportions, accomplished through the arcsine trans-
formation <t> (tabled in many statistical texts). The results are
effectively the same when the test is made using the chi-square
test with 1 degree of freedom.

6. The chi-square test for goodness of fit (one way) or associa-
tion in two-way contingency tables. In Table 1, k is the number

of cells and PQi and Pv are the null hypothetical and alternate
hypothetical population proportions in cell /. (Note that w's
structure is the same as chi-square's for cell sample frequencies.)
For goodness-of-fit tests, the df= k - 1, and for contingency
tables, df= (a — 1) (b — 1), where a and b are the number of levels
in the two variables. Table 2 provides (total) sample sizes for 1
through 6 degrees of freedom.

7. One-way analysis of variance. Assuming equal sample
sizes (as we do throughout), for g groups, the Ftest has df= g —
1, g(N - 1). The ES index is the standard deviation of the g
population means divided by the common within-population
standard deviation. Provision is made in Table 2 for 2 through 7
groups.

8. Multiple and multiple partial correlation. For k indepen-
dent variables, the significance test is the standard F test for
df= k,N—k-\. The ES index, /*, is defined for either squared
multiple or squared multiple partial correlations (R2). Table 2
provides for 2 through 8 independent variables.

Note that because all tests of population parameters that can
be either positive or negative (Tests 1-5) are two-sided, their ES
indexes here are absolute values.

In using the material that follows, keep in mind that the ES
posited by the investigator is what he or she believes holds for
the population and that the sample size that is found is condi-
tional on the ES. Thus, if a study is planned in which the inves-
tigator believes that a population r is of medium size (ES = r -
.30 from Table 1) and the / test is to be performed with two-
sided a = .05, then the power of this test is .80 if the sample size
is 85 (from Table 2). If, using 85 cases, t is not significant, then
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Table 2
TV for Small, Medium, and Large ES at Power = .80 for a = .01, .05, and .10

1.
2.
3.
4.
5.
6.

7.

8.

Test

Mean dif
Sigr
rdif
P= .5
Pdif
x2

\df
2df
Idf
4df
5df
6df

ANOVA
2g"
lg°
V
5«*
6S"
V

Mult/?
2fc*
3/c*
4̂
5£*
6/c*
Ik"
8/t*

Sm

586
1,163
2,339
1,165
584

,168
,388
,546
,675
,787
,887

586
464
388
336
299
271

698
780
841
901
953
998

1,039

.01

Med

95
125
263
127
93

130
154
172
186
199
210

95
76
63
55
49
44

97
108
118
126
134
141
147

Lg

38
41
96
44
36

38
56
62
67
71
75

38
30
25
22
20
18

45
50
55
59
63
66
69

Sm

393
783

1,573
783
392

785
964

1,090
1,194
1,293
1,362

393
322
274
240
215
195

481
547
599
645
686
726
757

a

.05

Med

64
85
177
85
63

87
107
121
133
143
151

64
52
45
39
35
32

67
76
84
91
97
102
107

Lg

26
28
66
30
25

26
39
44
48
51
54

26
21
18
16
14
13

30
34
38
42
45
48
50

Sm

310
617

1,240
616
309

618
771
880
968

1,045
1,113

310
258
221
193
174
159

.10

Med

50
68
140
67
49

69
86
98
108
116
124

50
41
36
32
28
26

Lg

20
22
52
23
19

25
31
35
39
42
45

20
17
15
13
12
11

Note. ES = population effect size, Sm = small, Med = medium, Lg = large, diff = difference, ANOVA =
analysis of variance. Tests numbered as in Table 1.
" Number of groups. * Number of independent variables.

either r is smaller then .30 or the investigator has been the
victim of the .20 (ft) risk of making a Type II error.

Examples

The necessary N for power of .80 for the following examples
are found in Table 2.

1. To detect a medium difference between two independent
sample means (d= .50 in Table 1) at a = .05 requires N= 64 in
each group. (A dof .50 is equivalent to a point-biserial correla-
tion of .243; see SPABS, pp. 22-24.)

2. For a significance test of a sample rala = .01, when the
population r is large (.50 in Table 2), a sample size = 41 is
required. At a = .05, the necessary sample size = 28.

3. To detect a medium-sized difference between two popula-
tion rs (q = .30 in Table 1) at a = .05 requires N = 177 in each
group. (The following pairs of rs yield q = .30: .00, .29; .20, .46;
.40, .62; .60, .76; .80, .89; .90, .94; see SPABS, pp. 113-116)

4. The sign test tests the HO that .50 of a population of paired
differences are positive. If the population proportion^ depar-
ture from .50 is medium (q = .15 in Table 1), at a = .10, the
necessary N= 67; at a = .05, it is 85.

5. To detect a small difference between two independent
population proportions (h = .20 in Table 1) at a = .05 requires

TV = 392 cases in each group. (The following pairs of Ps yield
approximate values of h = .20: .05, .10; .20, .29; .40, .50; .60, .70;
.80, .87; .90, .95; see SPABS, p. 184f.)

6. A 3 X 4 contingency table has 6 degrees of freedom. To
detect a medium degree of association in the population (w =
.30 in Table 1) at a = .05 requires N = 151. (w = .30 corresponds
to a contingency coefficient of .287, and for 6 degrees of free-
dom, a Cramer <£ of .212; see SPABS, pp. 220-227).

7. A psychologist considers alternate research plans involv-
ing comparisons of the means of either three or four groups in
both of which she believes that the ES is medium (/= .25 in
Table 1). She finds that at a = .05, the necessary sample size per
group is 52 cases for the three-group plan and 45 cases for the
four-group plan, thus, total sample sizes of 156 and 180. (When
/= .25, the proportion of variance accounted for by group
membership is .0588; see SPABS, pp. 280-284.)

8. A psychologist plans a research in which he will do a
multiple regression/correlation analysis and perform all the sig-
nificance tests at a = .01. For the F test of the multiple R2, he
expects a medium ES, that is, f2 = . 15 (from Table 1). He has a
candidate set of eight independent variables for which Table 2
indicates that the required sample size is 147, which exceeds his
resources. However, from his knowledge of the research area,
he believes that the information in the eight variables can be
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effectively summarized in three. For three variables, the neces-
sary sample size is only 108. (Given the relationship between f2

and R2, the values for small, medium, and large R2 are respec-
tively .0196, .1304, and .2592, and for R, .14, .36, and .51; see
SPABS, pp. 410-414.)
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