
Psychological Bulletin
1979, Vol. 86, No. 2, 420-428

Intraclass Correlations: Uses in Assessing
Rater Reliability
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Reliability coefficients often take the form of intraclass correlation coefficients.
In this article, guidelines are given for choosing among six different forms of
the intraclass correlation for reliability studies in which n targets are rated by k
judges. Relevant to the choice of the coefficient are the appropriate statistical
model for the reliability study and the applications to be made of the reliability
results. Confidence intervals for each of the forms are reviewed.

Most measurements in the behavioral
sciences involve measurement error, but
judgments made by humans are especially
plagued by this problem. Since measurement
error can seriously affect statistical analysis
and interpretation, it is important to assess
the amount of such error by calculating a
reliability index. Many of the reliability
indices available can be viewed as versions of
the intraclass correlation, typically a ratio
of the variance of interest over the sum of the
variance of interest plus error (Bartko, 1966;
Ebel, 1951; Haggard, 1958).

There are numerous versions of the intraclass
correlation coefficient (ICC) that can give
quite different results when applied to the
same data. Unfortunately, many researchers
are not aware of the differences between the
forms, and those who are often fail to report
which form they used. Each form is appropriate
for specific situations defined by the experi-
mental design and the conceptual intent of
the study. Unfortunately, most textbooks
(e.g., Hayes, 1973; Snedecor & Cochran, 1967;
Winer, 1971) describe only one or two forms
of the several possible. Making the plight of
the researchers worse, some of the older
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references (e.g., Haggard, 1958) contain
mistakes that have been corrected in a variety
of forums (Bartko, 1966; Feldt, 1965).

In this article, we attempt to give a set of
guidelines for researchers who have use for
intraclass correlations. Six forms of the ICC
are discussed here. We discuss these forms in
the context of a reliability study of the ratings
of several judges. This context is a special case
of the one-facet generalizability study (G
study) discussed by Cronbach, Gleser, Nanda,
and Rajaratnam (1972). The results we
present are applicable to other one-facet
studies, but we find the case of judges most
compelling.

The guidelines for choosing the appropriate
form of the ICC call for three decisions: (a)
Is a one-way or two-way analysis of variance
(ANOVA) appropriate for the analysis of the
reliability study? (b) Are differences between
the judges' mean ratings relevant to the
reliability of interest? (c) Is the unit of analysis
an individual rating or the mean of several
ratings? The first and second decisions pertain
to the appropriate statistical model for the
reliability study, and the second and the third
to the potential use of its results.

Models for Reliability Studies

In a typical interrater reliability study, each
of a random sample of n targets is rated
independently by k judges. Three different
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Table 1
Analysis of Variance and Mean Square Expectations for One- and Two-Way Random Effects
and Two- Way Mixed Model Designs

EMS

Source of
variation

Between targets
Within target

Between judges
Residual

n —

df

I
n(k - 1)
(*-
(»-

1)
!)(*- 1)

One-way Two-way
random random
effects effects for

MS for Case 1 Case 2

73 Jl/f C1 I. 2 _l_ 2 It g t 2 _LDjVLij K&T ~\~ <7W KffT -p (T/ "t* ff£

WM5 ffH'2 <ry2 + <r/2 + ffB2

JMS • — »(r j2 -(- ff/2 4- <TE
EMS — a? + a/

Two-way
mixed model
for Case 3"

!2 fcffT2 + O'B1

ffj1 + /o1/2 + a$
;2 nflj2 4- }<r? 4- o-B2

A/2 + <r*2

*• f = k/(k — 1) for the last three entries in this column.

cases of this kind of study can be denned:
1. Each target is rated by a different set of

k judges, randomly selected from a larger
population of judges.

2. A random sample of k judges is selected
from a larger population, and each judge rates
each target, that is, each judge rates n targets
altogether.

3. Each target is rated by each of the same k
judges, who are the only judges of interest.

Each kind of study requires a separately
specified mathematical model to describe its
results. The models each specify the decomposi-
tion of a rating made by the ith judge on the

_;'th target in terms of various effects. Among
the possible effects are those for the ith
judge, for the yth target, for the interaction
between judge and target, for the constant
level of ratings, and for a random error com-
ponent. Depending on the way the study is
designed, different ones of these effects are
estimable, different assumptions must be made
about the estimable effects, and the structure
of the corresponding ANOVA will be different.
The various models that result from the above
cases correspond to the standard ANOVA
models, as discussed in a text such as Hayes
(1973). We review these models briefly below.

Under Case 1, the effects due to judges, to
the interaction between judge and target,
and to random error are not separable. Let XH
denote the ith rating (i — 1, . . . , k) on the
jth target ( /=!, . . . ,«). For Case 1, we
assume the following linear model for *y:

+ bj + wtj. (1)

In this equation, the component jt is the
overall population mean of the ratings; bj
is the difference from ^ of the yth target's
so-called true score (i.e., the mean across
many repeated ratings on the yth target);
and Wij is a residual component equal to the
sum of the inseparable effects of the judge,
the Judge X Target interaction, and the error
term. The component bj is assumed to vary
normally with a mean of zero and a variance
of or2 and to be independent of all other com-
ponents in the model. It is also assumed that
the wn terms are distributed independently
and normally with a mean of zero and a
variance of <rjp2. The expected mean squares
in the ANOVA table appropriate to this kind of
study (technically a one-way random effects
layout) appear under Case 1 in Table 1.

The models for Case 2 and Case 3 differ
from the model for Case 1 in that the com-
ponents of w^ are further specified. Since the
same k judges rate all n targets, the component
representing the ith judge's effect may be
estimated. The equation

XH = M + a. + bj + (ab)ij + etf (2)

is appropriate for both Case 2 and Case 3.
In Equation 2, the terms Xi}, n, and b,- are
defined as in Equation 1; a, is the difference
from n of the mean of the ith judge's ratings;
(ab)a is the degree to which the *'th judge
departs from his or her usual rating tendencies
when confronted by the jih target; and «,-,- is
the random error in the ith judge's scoring of
thejth target. In both Cases 2 and 3 the target
component bj is assumed to vary normally
with a mean of zero and variance <rr2 (as in
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Case 1), and the error terms e^ are assumed
to be independently and normally distributed
with a mean of zero and variance cre

2.
Case 2 differs from Case 3, however, with

regard to the assumptions made concerning a{

and (ab)a in Equation 2. Under Case 2, a,- is a
random variable that is assumed to be normally
distributed with a mean of zero and variance
ov2; under Case 3, it is a fixed effect subject
to the constraint Za; = 0. The parameter corre-
sponding to tr/ is 0j2 = SfliV(* - 1).

In the absence of repeated ratings by each
judge on each target, the components (ab~)a
and en cannot be estimated separately. Never-
theless, they must be kept separate in Equation
2 because the properties of the interaction are
different in the two cases being considered.
Under Case 2, all the components (ab)a, where
i = 1, . . ., k ; j = 1, . . ., n, can be assumed
to be mutually independent with a mean of
zero and variance o-/2. Under Case 3, however,
independence can only be assumed for inter-
action components that involve different
targets. For the same target, say the jih, the
components are assumed to satisfy the
constraint

A consequence of this constraint is that
any two interaction components for the same
target, say (ab)ij and (ab)i>j, are negatively
correlated (see, e.g., Scheffe, 1959, section 8.1).
The reason is that because of the above
constraint,

0 = var E (fl4)iy] = k var [(aA)0]
>-i

+ *(*- 1) cov [(oA)«, (oi),.,-]
= £o72 + k(k- l)c,

say, where c is the common covariance between
interaction effects on the same target. Thus

c =
k- I' (3)

The expected mean squares in the ANOVA
for Case 2 (technically a two-way random
effects layout) and Case 3 (technically a two-
way mixed effects layout) are shown in the
final two columns of Table 1. The differences
are that the component of variance due to the

interaction (<r/2) contributes additively to each
expectation under Case 2, whereas under
Case 3, it does not contribute to the expected
mean square between targets, and it con-
tributes additively to the other expectations
after multiplication by the factor f = k / ( k — l ) .

In the remainder of this article, various
intraclass correlation coefficients are defined
and estimated. A rigorous definition is adopted
for the ICC, namely, that the ICC is the
correlation between one measurement (either
a single rating or a mean of several ratings)
on a target and another measurement ob-
tained on that target. The ICC is thus a
bona fide correlation coefficient that, as is
shown below, is often but not necessarily
identical to the component of variance due
to targets divided by the sum of it and other
variance components. In fact, under Case 3,
it is possible for the population value of the
ICC to be negative (a phenomenon pointed
out some years ago by Sitgreaves [I960]).

Decision 1: A One- or Two-Way
Analysis of Variance

In selecting the appropriate form of the ICC,
the first step is the specification of the ap-
propriate statistical model for the reliability
study (or G study). Whether one analyzes the
data using a one-way or a two-way ANOVA
depends on whether the study is designed
according to Case 1, as described earlier, or
according to Case 2 or 3. Under Case 1, the
one-way ANOVA yields a between-targets mean
square (BMS) and a within-target mean
square (WMS).

From the expectations of the mean squares
shown for Case 1 in Table 1, one can see that
WMS is as unbiased estimate of aw"1', in
addition, it is possible to get an unbiased
estimate of the target variance <rr2 by sub-
tracting WMS from BMS and dividing the
difference by the number of judges per target.
Since the w<; terms in the model for Case 1
(see Equation 1) are assumed to be inde-
pendent, one can see that or2 is equal to the
covariance between two ratings on a target.
Using this information, one can write a
formula to estimate p, the population value
of the ICC for Case 1. Because the covariance
of the ratings is a variance term, the index
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in this case takes the form of a variance ratio:

P = <rr2/(or2 + aw1}-

The estimate, then, takes the form

EMS - WMS
ICC(\, 1) =

BMS + (k - 1)WMS'

where k is the number of judges rating each
target. It should be borne in mind that while
7CC(1, 1) is a consistent estimate of p, it is
biased (cf. Olkin & Pratt, 1958).

If the reliability study has the design of
Case 2 or 3, a Target X Judges two-way
ANOVA is the appropriate mode of analysis.
This analysis partitions the within-target sum
of squares into a between-judges sum of
squares and a residual sum of squares. The
corresponding mean squares in Table 1 are
denoted JMS and EMS.

It is crucial to note that the expectation
of BMS under Cases 2 and 3 is different from
that under Case 1, even though the compu-
tation of this term is the same. Because the
effect of judges is the same for all targets under
Cases 2 and 3, interjudge variability does not
affect the expectation of BMS. An important
practical implication is that for a given
population of targets, the observed value of
BMS in a Case 1 design tends to be larger than
that in a Case 2 or Case 3 design.

There are important differences between
the models for Case 2 and Case 3. Consider
Case 2 first. From Table 1 one can see that an
estimate of the target variance <JTI can be
obtained by subtracting EMS from BMS and
dividing the difference by k. Under the assump-
tions of Case 2 that judges are randomly
sampled, the covariance between two ratings
on a target is again or2, and the expression for

Table 2
Four Ratings on Six Targets

Judge

Target

1
2
3
4
5
6

9
6
8
7

10
6

2
1
4
1
5
2

5
3
6
2
6
4

8
2
8
6
9
7

Table 3
Analysis of Variance for Ratings

Source of variance df

Between targets
Within target

Between judges
Residual

5
18
3

IS

11.24
6.26

32.49
1.02

the parameter p is again a variance ratio :

It is estimated by

7CC(2, 1)
BMS -EMS_

~ BMS+ (k- l)EMS+k(JMS-EMS)/n'

where n is the number of targets. To our
knowledge, Rajaratnam (1960) and Bartko
(1966) were the first to give this form. Like
7CC(1, 1), 7CC(2, 1) is a biased but consistent
estimator of p.

As we have discussed, the statistical model
for Case 3 differs from Case 2 because of the
assumption that judges are fixed. As the reader
can verify from Table 1, one implication of this
is that no unbiased estimator of <rr2 is available
when <r/2 > 0. On the other hand, under Case
3, or2 is no longer equal to the covariance
between ratings on a target, because of the
correlated interaction terms in Equation 2.
Because the interaction terms on the same
target are correlated, as shown in Equation 3,
the actual covariance is equal to OY2 — <r/2/
(k — 1). Another implication of the Case 3
assumption is that the total variance is equal
to or2 + <r/2 + <TE*, and thus the correlation is

P = or2 + <r/2 +

This is estimated consistently but with bias by

BMS - EMS
ICC (3, 1) =

BMS + (k - l)EMS'

As is discussed in the next section, the interpre-
tation of ICC (3, 1) is quite different from that
of 7CC(2, 1).

It is not likely that 7CC(2, 1) or 7CC(3, 1)
will ever be erroneously used in a Case 1 study,
since the appropriate mean squares would not
be available. The misuse of 7CC(1, 1) on data
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Table 4
Correlation Estimates From Six Intraclass
Correlation Forms

Form Estimate

ICC (1, 1)
ICC (2, 1)
ICC (3, 1)
7CC(1,4)
ICC (2, 4)
ICC (3, 4)

.17

.29

.71

.4*

.62

.91

from Case 2 or Case 3 studies is more likely.
A consequence of this mistake is the under-
estimation of the true correlation p. For the
same set of data, ICC (I, 1) will, on the average,
give smaller values than /CC(2,1) or ICC (3,1).

To help the reader appreciate the differences
among these coefficients and also among the
two coefficients to be discussed later, we apply
the various forms to an example. Table 2 gives
four ratings on six targets, Table 3 shows the
ANOVA table, and Table 4 gives the calculated
correlation estimates for various oases.

Given the choice of the appropriate indeK,
tests of the null hypothesis—-that p = 0—can
be made, and confidence intervals around the
parameter can be computed. When using

ICC(\, 1), the test that p is different from zero
is provided by calculating F0 = BMS/WMS
and testing it on (n — 1) and n(k — 1)
degrees of freedom. A confidence interval for p
can be computed as follows: Let Fi-p(i,j)
denote the (! — />)• 100th percentile of the F
distribution with i and j degrees of freedom,
and define

and
Fv = F.-Fi_|.[»(ft - 1), (» - 1)] (4)

PL = P./Pi-i,l(n - 1), n(k - 1)]. (5)

Thea

PL- 1 - 1
FL+ (k~ Pu+(k-

(6)

is a (1 — a) • 100% confidence interval for p.
When ICC(2, 1) is appropriate, the signifi-

cance test is again an P test, using F0

= BMS/EMSon (n - 1) and (k - l)(w - 1)
degrees of freedom. The confidence interval
for ICC (2, 1) is more complicated than that for
ICC (I, 1), since the index is a function of
three independent mean squares. Following
Satterthwaite (1946), Fleiss and Shrout (1978)
have derived an approximate confidence
interval. Let

(k -
(n - 1) + {»[! + (k- l)/5] -

where Fj = JMS/EMS and p = ICC (2, 1). If we define F* = F^a\_(n - 1), v~] and
= Fj_t«[>, (n - 1)], then

n(BMS - F*EMS)
F*[_kJMS + (kn - k - n)EMS] + nBMS *

gives an approximate (1 — a) • 100% confi-
dence interval around p.

Finally, when appropriate, ICC(5, 1) is
tested with F„ = BMS/EMS on (n - 1) and
(n — \)(k — 1) degrees of freedom. If we
define

FL =

Fu =

then

n - 1), (» -

- 1),

- 1)] ; (8)

- 1)1 (9)

PL- 1 Fu- 1
FL + (k - 1) ^ " ̂  Fu + (k - 1)

is a (1 — a) • 100% confidence interval for p.

n(F*BMS - EMS)
kJMS + (kn-k- n)EMS + nF+BMS (7)

Decision 2: Can Effects Due to Judges Be
Ignored in the Reliability Index?

In the previous section we stressed the
importance of distinguishing Case 1 from
Cases 2 and 3. In this section we discuss the
choice between Cases 2 and 3. Most simply
the choice is whether the raters are considered
random effects (Case 2) or fixed effects (Case
3). Thus, under Case 2 we wish to generalize
to other raters within some population,
whereas under Case 3 we are interested only
in a single rater or a fixed set of k raters. Of
course, once the appropriate case is identified,
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the choice of indices is between ICC(2, 1) and
ICC(3, 1), as discussed before.

Most often, investigators would like to say
that their rating scale can be effectively used
by a variety of judges (Case 2), but there are
some instances in which Case 3 is appropriate.
Suppose that the reliability study (the G
study) precedes a substantive study (the
decision study in Cronbach et al.'s terms)
in which each of the k judges is responsible
for rating his or her own separate random
sample of targets. If all the data in the final
study are to be combined for analysis, the
judges' effects will contribute to the variability
of the ratings, and the random model with
its associated ICC (2, 1) is appropriate. If, on
the other hand, each judge's ratings are
analyzed separately, and the separate results
pooled, then interjudge variability will not
have any effect on the final results, and the
model of fixed judge effects with its associate
ICC(3, 1) is appropriate.

Suppose that the substantive study involves
a correlation between some reliable variable
available for each target and the variable
derived from the judges' ratings. One may
either determine the correlation for the entire
study sample or determine it separately for
each judge's subsample and then pool the
correlations using Fisher's z transformation.
The variability of the judges' effects must be
taken into account in the former case, but
can be ignored in the latter.

Another example is a comparative study
in which each judge rates a sample of targets
from each of several groups. One may either
compare the groups by combining the data
from the k judges (in which case the component
of variance due to judges contributes to
variability, and the random effects model
holds) or compare the groups separately for
each judge and then pool the differences (in
which case differences between the judges'
mean levels of rating do not contribute to
variability, and the model of fixed judge
effects holds).

When the judge variance is ignored, the
correlation index can be interpreted in terms
of rater consistency rather than rater agree-
ment. Researchers of the rating process may
choose between 7CC(3, 1) and ICC(2, 1) on

the basis of which of these concepts they wish
to measure. If, for example, two judges are
used to rate the same n targets, the consistency
of the two ratings is measured by ICC(3, 1),
treating the judges as fixed effects. To measure
the agreement of these judges, ICC (2, 1) is
used, and the judges are considered random
effects; in this instance the question being
asked is whether the judges are interchangeable.

Bartko (1976) advised that consistency is
never an appropriate reliability concept for
raters; he preferred to limit the meaning of
rater reliability to agreement. Algina (1978)
objected to Bartko's restriction, pointing out
that generalizability theory encompasses the
case of raters as fixed effects. Without directly
addressing Algina's criticisms, Bartko (1978)
reiterated his earlier position. The following
example illustrates that Bartko's blanket
restriction is not only unwarranted but can
also be misleading.

Consider a correlation study in which one
judge does all the ratings or one set of judges
does all the ratings and their mean is taken.
In these cases, judges are appropriately con-
sidered fixed effects. If the investigator is
interested in how much the correlations might
be attenuated by lack of reliability in the
ratings, the proper reliability index is ICC (3, 1),
since the correlations are not affected by
judge mean differences in this case. In most
cases the use of ICC(2, 1) will result in a lower
value than when ICC(3, 1) is used. This
relationship is illustrated in Tables 2, 3, and 4.

Although we have discussed the justification
of using ICC(3, 1) with reference to the final
analysis of a substantive study, in many cases
the final analytic strategy may rest on the
reliability study itself. Consider, for example,
the case discussed above in which each judge
rates a different subsample of targets. In this
instance the investigator can either calculate
correlations across the total sample or calculate
them within subsamples and pool them. If
the reliability study indicates a large dis-
crepancy between ICC(2, 1) and 7CC(3, 1),
the investigator may be forced to consider
the latter analytic strategy, even though it
involves a loss of degrees of freedom and a
loss of computational simplicity.
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Decision 3: What Is the Unit of Reliability?

The ICC indices discussed so far give the
expected reliability of a single judge's ratings.
In the substantive study (D study), often it is
not the individual ratings that are used, but
rather the mean of m ratings, where m need
not be equal to k, the number of judges in the
reliability study (G study). In such a case
the reliability of the mean rating is of interest;
this reliability will always be greater in
magnitude than the reliability of the individual
ratings, provided the latter is positive (cf.
Lord & Novick, 1968).

Only occasionally is the choice of a mean
rating as the unit of analysis based on sub-
stantive grounds. An example of a substantive
choice is the investigation of the decisions
(ratings) of a team of physicians, as they are
found in a hospital setting. More typically,
an investigator decides to use a mean as a
unit of analysis because the individual rating
is too unreliable. In this case, the number of
observations (say, m) used to form the mean
should be determined by a reliability study
in pilot research, for example, as follows. Given
the lower bound, pL, on p from Inequality 6 or
Inequality 7, whichever is appropriate, and
given a value, say p*, for the minimum accept-
able value for the reliability coefficient (e.g.,
p* = ,75 or .80), it is possible to determine m
as the smallest integer greater than or equal to

m = P*(l ~ PL)
PL(! ~ P*)'

Once m is determined, either by a reliability
study or by a choice made on substantive
grounds, the reliability of the ratings averaged
over m judges can be estimated using the
Spearman-Brown formula and the appropriate
ICC index described earlier. When data from
m judges are actually collected (e.g., in the D
study following the G study used to determine
m), they can be used to estimate the reliabilities
of the mean ratings in one step, using the
formulas below. In these applications, k = m.
The formulas correspond to 7CC(1, 1),
ICC(2, 1), and ICC(3, 1), and the significance
test for each is the same as for their correspond-
ing single-rater reliability index.

The index corresponding to ICC (I, 1) is
ICC (I, k) = (BMS - W MS) /BMS. Letting
PL and FU be defined as in Equations 4 and 5,

- -

is a (1 — a) • 100% confidence interval for the
population value of this intraclass correlation.

The index corresponding to ICC (2, 1) is

ICC(2, k) =
BMS - EMS

BMS + (JMS - EMS)/ri

The confidence interval for this index is most
easily obtained by using the confidence bounds
obtained for ICC(2, 1) in the Spearman-Brown
formula. For example, the lower bound for
ICC(2, k) is

kpL**
PL = i K — 1

where PL** is the lower bound obtained for
ICC (2, 1).

For ICC (3, 1), the index of consistency for
the mixed model case, the generalization from
a single rating to a mean rating reliability is
not quite as straightforward. Although the
covariance between two ratings is <rr2 — a/2/
(k — 1), the covariance between two means
based on k judges is err2. As we pointed out
before, under Case 3 no estimator exists for
this term.

If, however, the Judge X Target interaction
can be assumed to be absent, then the ap-
propriate index is

ICC(3, k) = (BMS - EMS)/BMS.

Letting FL and FU be defined as in Equations
8 and 9,

J_

TL

1

is a (1 — a) • 100% confidence interval for the
population value of this intraclass correlation.
ICC(3, k) is equivalent to Cronbach's (1951)
alpha; when the ratings of observers are
dichotomous, it is equivalent to the Kuder-
Richardson (1937) Formula 20.
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Sometimes the choice of a unit of analysis
causes a conflict between reliability considera-
tions and substantive interpretations. A mean
of k ratings might be needed for reliability,
but the generalization of interest might be
individuals.

For example, Bayes (1972) desired to relate
ratings of interpersonal warmth to nonverbal
communication variables. She reported the
reliability of the warmth ratings based on the
judgments of 30 observers on 15 targets.
Because the rating variable that she related
to the other variables was the mean rating
over all 30 observers, she correctly reported
the reliability of the mean ratings. With this
index, she found that her mean ratings were
reliable to .90. When she interpreted her
findings, however, she generalized to single
observers, not to other groups of 30 observers.
This generalization may be problematic, since
the reliability of the individual ratings was
less than .30—a value the investigator did not
report. In such a situation in which the unit
of analysis is not the same as the unit general-
ized to, it is a good idea to report the relia-
bilities of both units.

Conclusion

It is important to assess the reliability of
judgments made by observers in order to
know the extent that measurements are
measuring anything. Unreliable measurements
cannot be expected to relate to any other
variables, and their use in analyses frequently
violates statistical assumptions. Intraclass
correlation coefficients provide measures of
reliability, but many forms exist and each is
appropriate only in limited circumstances.

This article has discussed six forms of the
intraclass correlation and guidelines for choos-
ing among them. Important issues in the
choice of an appropriate index include whether
the ANOVA design should be one way or two
way, whether raters are considered fixed or
random effects, and whether the unit of
analysis is a single rater or the mean of several
raters. The discussion has been limited to a
relatively pure data analysis case, k observers
rating n targets with no missing data (i.e..

each of the » targets is rated by exactly k
observers). Although we have implicitly limited
the discussion to continuous rating scales,
Feldt (1965) has reported that for ICC (3, k)
at least, the use of dichotomous dummy
variables gives acceptable results. Readers
interested in agreement indices for discrete
data, however, should consult the Fleiss
(1975) review of a dozen coefficients or the
detailed review of coefficient kappa by Hubert
(1977).
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