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The performance of five methods for determining the number of components to retain (Horn's parallel
analysis, Velicer's minimum average partial [MAP], Cattell's scree test, Bartlett's chi-square test, and
Kaiser's eigenvalue greater than 1.0 rule) was investigated across seven systematically varied conditions

(sample size, number of variables, number of components, component saturation, equal or unequal
numbers of variables per component, and the presence or absence of unique and complex variables).

We generated five sample correlation matrices at each of two sample sizes from the 48 known population
correlation matrices representing six levels of component pattern complexity. The performance of
the parallel analysis and MAP methods was generally the best across all situations. The scree test was
generally accurate but variable. Bartlett's chi-square test was less accurate and more variable than
the scree test. Kaiser's method tended to severely overestimate the number of components. We discuss
recommendations concerning the conditions under which each of the methods are accurate, along
with the most effective and useful methods combinations.

Behavioral scientists often wish to represent a set of observed

variables (P) by a smaller set of derived variables (m). Component

analysis and factor analysis are two procedures designed to solve

this problem. Such analyses may allow the calculation of m scores

to replace the original /"observations or provide information for

the understanding and interpretation of the original variables.

Researchers seeking to summarize the data set must make a

number of decisions, including choice of method, choice of ro-

tation, and choice of method of calculating the scores. One of

the most critical decisions the applied researcher faces is selecting

how many factors or components to retain (m). In this article

we present the results of a Monte Carlo evaluation of five methods

that have been proposed for determining the value of m.

The determination of the number of components or factors

to retain is likely to be the most important decision a researcher

will make. Decisions involving choice of method, type of rotation,

and type of score will have relatively less impact because of the

demonstrated robustness of results across different alternatives

in these areas. Under- or over-extraction will distort subsequent

results. The obvious problem of underextraction involves the

loss of important information by ignoring a factor or combining

it with another factor. The effects of overexlraction, followed by

rotation, are less well documented but equally important. Comrey

(1978) describes some of the dangers, such as minor factors being

built up at the expense of major factors and/or the creation of

factors with only one high loading and a few low loadings. These

are factors that are both uninterpretable and unlikely to replicate.

Velicer and Jackson (1985) assert that overextraction is likely

the prime reason for discrepancies between factor analysis and
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component analysis. In view of this decision's importance to the

analysis, it is interesting that some recent textbooks provide little

or no guidance in this area (Chatfield & Collins, 1980; B. B.

Jackson, 1983; Lunneborg & Abbott, 1983).

Properties of Retained Components

The comparison of methods to determine the number of com-

ponents to retain requires a description of the qualities desirable

in a retained component. A review of the properties of principal

components, linked with the goal of data summarization, pro-

vides such a description.

Number of Substantial Loadings

If principal-components analysis (PCA) is used to summarize

a data set, each retained component must contain at least two

substantial loadings. Algebraic (T. W. Anderson & Rubin, 1956)

and statistical (Lawley, 1940; Morrison, 1976) examinations of

common factor analysis (CFA) agree that at least three variables

are required before the first factor can be identified. T. W. An-

derson and Rubin (1956) have further demonstrated that each

subsequent identifiable factor must contain at least three nonzero

loadings. At a sample level, a minimum of at least three significant

loadings are required for factor identification.

Variance Accounted For

The variance of each principal component is equal to the ei-

genvalue of that component. A 1.0-eigenvalue component ac-

counts for as much variance as a single variable. Components

with eigenvalues near zero provide no summarizing power. A

component with an eigenvalue greater than 1.0 provides more

summarizing power than an original variable.

432
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Component Reliability

KaiserXI960) and Kaiser and Caffrey (1965) addressed the

issue of component reliability. Kaiser (I960) argued that the re-

liability of a component will always be nonnegative when the

eigenvalue exceeds 1.0. Horn (1969) noted that this approach

to reliability includes all P variables regardless of their component

loadings. In applied usage, component scores are usually gen-

erated as an unweighted sum of those variables with substantial

component loadings. Reliability estimates based only on those

items contributing to the component score can be quite high

even when the component eigenvalue is below I.O(Horn, 1969).

The component properties reviewed above can be integrated

to present an operational definition of a useful component. Con-

ventional use of PCA as a data reduction technique, combined

with algebraic and statistical necessity in CFA, dictate that at

the population level, at least three nonzero loadings are required

to identify a useful component. At the sample level, three sig-

nificant and substantial loadings are needed. In order to guarantee

nonnegative component reliability, retained components are re-

quired to have an eigenvalue greater than 1.0. Therefore, we

refer to all components with three or more substantial loadings

and an eigenvalue of greater than 1.0 as major components

(MJCs). Such MJCs would probably be of interest to most in-

vestigators. Components that have either (a) less than three sub-

stantial loadings but an eigenvalue of 1.0 or greater or (b) more

than three substantial loadings but an eigenvalue of less than 1.0

may be of interest to some investigators, and we refer to them

as minor components (MNCs). Finally, components with both

less than three substantial loadings and an eigenvalue less than

1.0 should never be retained, and we refer to them as trivial

components (TCs).

Principal-components analysis (Hotelling, 1933) may be

viewed as involving an eigendecomposition of the P X P sample

correlation matrix R,

R = L'D2L, (I)

where D2 is the P X P diagonal matrix containing the eigenroots

of R, and L is a P X P matrix containing the corresponding

eigenvectors. When PCA is used as a data summary model, only

the first m components are retained. The component pattern (A)

may be written as

A = LmDm, (2)

where Dm contains the first m eigenroots and Lm contains the

corresponding first m eigenvectors. Glass and Taylor (1966),

Pruzek and Rabinowitz (1981), and Kaiser (1970) have reported

on the widespread use of PCA in this manner. Velicer (1974,

I976a, 1977) and Velicer, Peacock, and Jackson (1982) have

shown that this use of PCA and CFA results in essentially equiv-

alent solutions.

A second class of procedures, CFA, has also been used to

summarize a set of P variables. It is important to note that m is

frequently assumed to be known for the derivation of these factor

analysis procedures. Sometimes the maximum likelihood test is

used to test whether the assumed number of factors is correct.

Because both CFA and PCA are used as data summary tech-

niques, it is important to note some differences between them.

The CFA approach requires that m be known prior to the anal-

ysis. The value of m is usually determined in one of two ways.

It may be determined by applying some rule to a PCA solution,

with the result then used in the factor analysis solution, or a

maximum likelihood test may be used to evaluate different values

of m. Unfortunately, the methods applied to the PCA solution

often provide conflicting results. Further, D. N. Jackson and Chan

(1980) have discussed numerous computational difficulties with

the maximum likelihood approach itself. Finally, an indeter-

minacy has been identified in the solution of the basic factor

analysis equation (Guttman, !954;Schonemann & Wang, 1972;

Steiger & Schonemann, 1979). In light of difficulties associated

with the requirement that in be known a priori, the indetermi-

nacy of the factor model, the computation problems with factor

analysis, the widespread use of PCA, and the general compara-

bility of results across the two methods, we chose to focus on

the PCA procedure.

Determining the Number of Components

A number of rules have been suggested to determine the ap-

propriate number of components to retain (Bartlett, 1950. 1951;

Cattell, 1966; Crawford. 1975: Everett. 1983; Horn. 1965: Jo-

reskog, 1962: Kaiser, 1960: Revelle & Rocklin, 1979; Veldman.

1979; Velicer, 1976b). These rules often do not give the same

results (A. D. Anderson, Acito, & Lee, 1982; Cattell & Vogelman.

1977:Hakstian, Rogers.*Cattell. 1982; Horn, 1965; Linn. 1968;

Zwick & Velicer, 1982). Applied researchers are. therefore, often

at a loss as to how to proceed. Contlicting research conclusions

can be traced to differing methods of defining the correct number

of components.

In this section we describe the five methods to be evaluated.

These methods are: (a) Bartlett's chi-square lest, (b) Kaiser's

eigenvalue greater than 1.0 rule ( K l ) , (c) the minimum average

partial rule (MAP), (d) the scree lest, and (e) the parallel analysis

(PA) method. These methods were selected for inclusion because

of their widespread use or their extensive Iheorelical justification.

Barlletl 's Test

Following Lawley's (1940, 1941) test for maximum likelihood

factor analysis, Bartlett (1950, 1951) developed an analagous

statistical test of the null hypothesis that the remaining P - m

eigenvalues are equal. Each eigenvalue is excluded sequentially

until the approximate chi-square test of the null hypothesis of

equality fails to be rejected. The first m excluded components

are retained. The Bartlett test is not commonly available in stan-

dard statistical packages.

Bartlett's test appears sensitive to the sample size. Gorsuch

(1973) argued that increased power at larger sample sizes could

lead to the retention of more components. Horn and Engstrom

(1979) suggested changing the alpha level at different sample

sizes. However, as the sample size increases, the estimates of

population eigenvalues become increasingly more accurate. This

increased accuracy leads to smaller observed differences between

equal eigenvalues and may appropriately offset the increased

power of the Bartlett test when the population eigenvalues are

actually equal. Zwick and Velicer (1982) found the Bartlett test

somewhat more accurate with large samples than with small

samples.
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Eigenvalue Greater Than 1.0 (Kl)

Perhaps the most popular—certainly the most commonly

used—method is to retain the components with eigenvalues

greater than 1.0. The Kl method is the default option on many

statistical packages (i.e., SPSS-X, SAS, BMDP). Kaiser (1960)

developed the rationale for this method, focusing on component

reliability, pattern meaningfulness, and Guttman's (1954) work

examining the lower bounds for the number of components in

image analysis. Gorsuch (1983) noted that many users follow

Kaiser (I960) and use the Kl rule to determine the number of

components rather than as a lower bound. Mote (1970) and

Humphreys (1964) reported that rotation of a greater number

of components resulted in more meaningful solutions. They in-

dicated that the Kl rule may sometimes lead to the retention of

too few components.

A number of researchers (Browne, 1968; Cattell & Jaspers,

1967; Horn, 1965: Lee & Comrey, 1979; Linn, 1968; Revelle &

Rocklin, 1979; Yeomans & Colder, 1982; Zwick & Velicer, 1982)

have found that the number of components retained by Kl is

often an overestimate. Gorsuch (1983) and Kaiser (1960) report

that the number of components retained by Kl is commonly

between one-third and one-fifth or one-sixth the number of vari-

ables included in the correlation matrix. A Monte Carlo study

by Zwick and Velicer (1982) supports this result. This relation

of the number of retained components to the number of variables

is problematic. The Kl method, although commonly used, is

believed by some critics to sometimes underestimate and by many

others to grossly overestimate the number of components.

Minimum Average Partial (MAP)

Velicer (I976b) has suggested a method based on the matrix

of partial correlations. The average of the squared partial cor-

relation is calculated after each of the m components has been

partialed out. When the minimum average squared partial cor-

relation is reached, no further components are extracted. The

average squared partial correlation reaches a minimum when

the residual matrix most closely resembles an identity matrix.

Using this rule, at least two variables will have high loadings on

each retained component. Velicer (1976b) points out that the

method is exact, can be applied with any covariance matrix, and

is logically related to the concept of factors as representing more

than one variable. Zwick and Velicer (1982) reported that the

MAP rule was more accurate in identifying a known number of

components than either the K1 or the Bartlett test rule. Reddon

(in press) also reports good performance in a monte carlo eval-

uation. Reddon (1985) describes some simple FORTRAN subrou-

tines for calculating the MAP rule.

Scree Test

Cattell (1966) described this rule, which is based on a graph
of the eigenvalues. The scree test is simple to apply. The eigen-

values are plotted, a straight line is fitted through the P — m

smaller values, and those falling above the line are retained. A

number of complications may occur, including: (a) a gradual

slope from lower to higher eigenvalues with no obvious break

point in the line, (b) more than one break point in the line, and

(c) more than one apparently suitable line may be drawn through

the low values. Horn and Engstrom (1979) have noted the un-

derlying similarity of the logic of Bartlett's chi-square test and

the scree test. Both tests are based on an analysis (one statistical,

the other visual) of the essential equality of the "remaining"

eigenvalues.

The graph for scree inspection is available as an option in

SPSS-X. The actual decision must be made by the researcher.

Tucker. Koopman, and Linn (1969) found the scree test to be

correct in 12 of 18 cases. Cliff(1970) found it to be accurate,

particularly if questionable components are included. Cattell and

Jaspers (1967) found it was correct in 6 of 8 cases, whereas Cattell

and Vogelmann (1977) reported the test to be accurate over 15

systematically differing analyses. Further, Cliff and Hamburger

(1967) found more definite breaks with larger sample sizes (n -

400 vs. n = 100), and Linn (1968) concurred with this conclusion.

Zwick and Velicer (1982) found the scree test to be most accurate

with larger samples and strong components. They found that it

was the most accurate of four methods evaluated across many

examples of matrices of known, noncomplex structure.

Use of the scree test always involves issues of reliability. Cattell

and Vogelmann (1977) and Zwick and Velicer (1982) have re-

ported good interrater reliability both among naive and among

expert judges. However, Crawford and Koopman (1979) have

reported extremely low interrater reliabilities. The circumstances

associated with high and low interrater reliability on the scree

procedure have not been identified.

Parallel analysis (PA)

Parallel Analysis (Horn, 1965) is a sample-based adaptation

of the population-based Kl rule. Horn (1965) noted that at the

population level, the eigenvalues of a correlation matrix of un-

correlated variables would all be 1.0. When samples are generated

based on such a matrix, however, the initial eigenvalues exceed

1.0 whereas the final eigenvalues are below 1.0. Horn (1965)

suggested that the eigenvalues of a correlation matrix of P random

uncorrelated variables should be contrasted with those of the

data set in question, based on the same sample size. Components

of the matrix of interest, which have eigenvalues greater than

those of the comparison random matrix, would be retained. This

approach integrates the reliability and data-summarizing em-

phasis of the population-based Kl rule and the effects of sample

size.
Although there has been no published systematic examination

of the PA method with PCA, M. B. Rjchman (personal com-

munication, October 14, 1983) reported a series of simulation

studies using this method. He found that PA was very accurate

when applied to correlation matricies conforming to the formal

factor analytic model. He further reported that PA led to retention

of too many components when applied to correlation matricies

conforming to the middle model described by Tucker et al.

(1969). The method was more accurate in both cases at larger

(n = 500) than at smaller (n = 100) sample sizes.

Humphreys and Montanelli (1975) applied PA to principal

axis factor analysis and found it was accurate over a range of

examples. Montanelli and Humphreys (1976) developed a

regression equation that accurately predicts the eigenvalues of

random correlation matrices with squared multiple correlations

inserted as the diagonal. Green (1983) used this prediction equa-
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lion to evaluate the performance of factor analysis of binary

items.

Variables Affecting Decision Methods

Previously reported findings on the performance of each of

the decision methods indicate that they are affected by several

different factors. These factors include sample size, the number

of variables, component saturation, component identification,

and the presence of special types of variables.

Sample Size

Depending on the decision method used, it is possible that the

number of subjects may affect the accuracy of the decision about

the number of components to retain. Sample size is typically

determined both by practical applied considerations and the need

for accurate estimation of correlations.

Number of Variables

Principal-components analyses often involve 80 to 100 vari-

ables. Analysis of 200 variable sets is becoming common. Larger

numbers of variables reportedly increase the accuracy of some

rules but decrease it for others (Zwick & Velicer, 1982).

Component Saturation

Underlying components made up exclusively of high loadings

(e.g., .80) were more likely to be retained by various decision

methods than components exclusively made up of lower loadings

(e.g., .40; Linn, 1968; Zwick & Velicer, 1982).

Component Identification

The accurate identification of a component may depend on

the number of variables that have nonzero loadings on that com-

ponent. The impact of unequal numbers of variables per com-

ponent is unclear for any of the rules under discussion.

Special Variables

Complex variables have a nonzero loading on more than one

component. Unique variables have only one nonzero loading

and no other variable loads substantially on the same component.

Component patterns containing both complex and unique vari-

ables are believed to occur frequently in applied situations (Tucker

et al., 1969). The effect of these types of variables on the various

decision rules is unclear.

The robustness of the five rules in question across these vari-

ables is the central focus of this study.

Method

Method of Data Generation

Studies of the effectiveness of the various decision methods may be

categorized into one of two types. Historically, the more common type

of study used real data representing either new work or classic data sets.

These studies used some logical criteria concerning the appropriate num-

ber of components and compared the performance of a proposed decision

method to the logically determined value (e.g., Caltell, 1966; Horn, 1965;

Humphreys & Montanelli, 1975: Velicer, I976a). In using an arbitrary

logical criterion, these studies may have inaccurately estimated the per-

formance of the decision method in question. More recently, studies of

decision rule effectiveness have used correlation matrices generated from

component structures entirely under the control of the investigator (e.g.,

A. D. Anderson et al.. 1982; Cattell & Vogelman, 1977; Tucker el al.,

1969; Zwick & Velicer, 1982). These studies have the advantage of a

known criterion against which to measure the performance of the decision

methods. They are. however, open to the criticism that the generated

matrices, although conforming to a mathematical model, may not rep-

resent real data and may thus lead to inappropriate conclusions (Tucker

ei al., 1969).

The question of a rule's accuracy cannot be examined without a known

criterion. Although logical arguments can be mounted to defend the

number of components present in some data sets, these arguments are

always open to question. For the assessment of the impact of various

conditions on a rule's accuracy, generated data of a known number of

components is preferable. The issue of generalization to real data sets is

an important but separate issue that may be independently addressed in

the particular way the data is generated. We used generated data in an

approach similar to the "middle model" of Tucker et al. (1969).

Procedure

The number of variables (P) to be used was set at 36 and 72. These

values represent small and moderately large data sets and accommodate

constraints imposed by the selection of ihe number of components to be

included. Larger sets of variables have been shown to haw a positive

impact on MAP. the Bartlett lest (Zwick & Velicer, 1982), and the scree

test (Caltell & Vogelman. 1977), and a negative impact on Kl (Zwick &

Velicer, 1982).

The sample sizes were selected to reflect common, applied usage. They

were set as a function of the number of variables. The lower sample size

was set at twice the number of variables. The higher sample size was set

at five times the number of variables The resulting ns were 72 and 180

in the cases including 36 variables. Sample sizes of 144 and 360 were

selected when 72-variable cases were examined. These appear to bracket

much of the range of sample sizes as reported in applied educational and

psychological research. Larger sample sizes have been shown to moderately

improve the performance of the MAP, scree, and Kl methods (Cattell

& Vogelman. 1977; Zwick & Velicer, 1982) and to sometimes improve

and sometimes weaken the accuracy of the Bartlett test (Gorsuch, 1983;

Zwick & Velicer. 1982).

Three and six major components were built into the population cor-

relation matrix when Pequaled 36, and six and nine when /'equaled 72.

We chose these values to reflect a reasonable range of reported applied

usage. They permit a span of an average number of variables per MJC

(/7MJC) from 6 to 12. Although this P/MJC is somewhat high, such

values were required to permit variability in the number of variables per

component, while still meeting the constraint of at least three substantial

loadings in each MJC.

The distribution of P/MJC was set as either an equal or an unequal

number of variables per MJC. For the unequal number cases, the P/MJC

number was symmetrically distributed aboui the mean number of vari-

ables per MJC. That is. if P were 36, and m were 6, the average number

of variables per MJC would be 6. When P/MJC was planned to be un-

equal, the number of variables per component was 8. 7. 6, 6, 5, and 4.

Similar distributions for other combinations of P and m were used.

Component saturation (SAT), the magnitude of the loading of each

variable on an MJC, was split between a high of .80 and a low of .50.

These values bridge much of Ihe applied range and have been shown

(Zwick & Velicer. 1982) to differentially affect four of the decision rules

under consideration. Within any one matrix, ihe component loadings on

all major components were equal and either high (.80) or low (.50).
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Table 1
Means of the Difference From the Number of Population Major Components at Different Sample Sizes

Method

P n

36 72
180

72 144
360

36 72
180

72 144
360

MAP

-1.08
-1.17
-0.45
-0.43

0.10
0.0
0.02
0.0

PA

-0.05
0.13
0.02
0.07

-0.02
0.0
0.0
0.0

Scree

Saturation =

0.50
0.68
1.16
0.46

Saturation =

0.27
0.23
0.28
0.31

Kl

.50
8.32
7.30

17.80
, 15.42

.80
1.77
1.32
2.97
2.52

BA

-2.87
-1.78
-0.43

0.40

0.47
1.23
3.88
5.03

BB

-3.92
-2.20
-1.60
-0.13

-0.48
0.68
2.62
4.10

BC

-3.98
-2.27
-1.73
-0.22

-0.60
0.62
2.50
3.98

Note. BA, BB, and BC = three levels of Bartlett's chi-square test (.05, .001, and .0005, respectively). Kl = Kaiser's eigenvalue greater than unity rule.
MAP = minimum average partial. P = a set of variables. PA = parallel analysis. Scree = CattelFs scree test.

For the purposes of this study, unique variables were defined as variables
thai do not load at all on either MJCs or TCs in the population structure.
Instead, unique variables are the only variables loading on one type of
MNC. Such an MNC has a population eigenvalue of 1.0. We define com-
plex variables as those variables that load substantially on an MJC bui
also load minimally (.20) on a second type of MNC in the population
structure.

We constructed specific combinations of these variables. Previous work
has indicated that sample size, P, and SAT have an impact on some of
the decision rules. At each level of P and SAT, component patterns were
constructed to evaluate the impact of sample size P/MiC. and a number
of combinations of factors. A "best case" set was denned for comparison
purposes. This first level of complexity (a) had an equal number of vari-
ables per MJC, no MNCs or TCs present, and thus no complex or unique
variables. Five other lev-els of structural complexity were created for com-
parison with the best case. This was done by (b) including complex vari-
ables to create the MNCs, (c) letting the number of variables per MJC
become unequal, (d) including unique variables (as many as there were
MJCs) to provide the second type of MNC, (e| including unique and
complex variables together to provide MNCs, and, finally, (f) we con-
structed a level that included an unequal number of variables per MJC
and both complex and unique variables. We included the last two levels
of complexity to highlight the possible importance of the very common
situation of unequal numbers of variables per MJC.

Data Generation

Population correlation matrices were created for each combination of
the 6 (Complexity) x 2 (P) x 2 (SAT) X 2 (m) factors outlined above.
Each population correlation matrix was determined as follows. One ap-
propriate population component pattern (A) was created in accordance
with the number of variables factor (P). the level of saturation factor
(SAT), the number of components factor (m), and the complexity under
consideration. Postmultiplying by its transpose resulted in a matrix (R* =
AA'l. Substituting ones in the diagonal produced a population
correlation matrix (R = R* + D2). Five sample correlation matrices were
generated from each population matrix (Montanelli. 1975) at each sample
size.

Principal-components analysis was performed on each of the resulting
480 ( 6 x 2 x 2 x 2 x 2 x 5 ) sample matrices. The number of components
to be retained by each of the four calculable rules ( K l . MAP, PA. and
Bartlett's test) was determined. We selected three alpha levels to use with
Bartlett's test in order to incorporate Horn and Engstrom's (1979) rec-

ommendation: BA = .05. BB = .001, and BC - .0005. The-PA decision
was based on the mean eigenvalues of 50 random correlation matrices
at each level of P and the sample size.

The scree test was performed on computer generated plots (8 x 14
in.) of the eigenvalues of each of the 480 matrices. These plots were
examined h> two naive raters trained in the scree method (Cattell &
Vogelman, 1977). The graphs were presented lo the raters in different
mi\ed orders. If either rater asked a question about a particular plot,
both listened to an explanation based on the instructions given by Cattell
and Vogelman (1977). Whenever possible, examples from the Cattell and
Vogelman (1977) directions were used to clarify questions. Independently,
an experienced expert judge, uninformed as lo the details of the exper-
iment but fully familiar with the use of Ihe scree test, rated one sample
from each of Ihe 96 cells.

The judgment required by Ihe scree method raises the question of rater
reliability. The inlerrater reliability estimates of Ihe mean were calculated
for the raters' decisions corrected for Ihe number of ralers. The reliability
estimates were calculated for each level of complexity, saturation and the
number of variables (24 different alpha coefficients). The reliability es-
timates ranged from .61 to 1.00, with a median value of approximately
.88. Generally, reliability was lower for higher levels of complexity and
the low (.50) saturation level.

The correlations of the mean of the raters decisions with the expert's
judgment ranged from .60 to .90 across the six levels of complexity. The
median and mean (Fisher Z transformed) correlation of the averaged
raters' decision with the expert's judgment were both approximately .80.

Results

Each decision method leads to an estimate of the number of
MJCs to retain. The difference between these rule-determined
estimates of MJC (RMJC) and the known population value of
the number of MJCs (PMJC) was the primary dependent variable
in this study. This difference was computed as d = RMJC —
PMJC. Positive afs indicate overestimations whereas negative ds
indicate underestimations. A difference of zero indicates a correct
estimation of MJC. The standard deviation of the difference is
an indication of the methods' consistency. Smaller standard de-
viations indicate more consistent estimates of MJC. We present
the means for each method, under various conditions, next.

The results are presented for the P = 36 cases and the P = 12
cases in each table. Each level of sample size (Table 1), number
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Table 2
Means of the Difference From the Number of Population Major Components at Different Numbers of Variables per Component

Method

P P/MJC

36 6
12

72 8
12

36 6
12

72 8
12

MAP

-2.27
0.02

-0.92
0.03

0.08
0.02
0.02
0.09

PA

0.05
0.03
0.07
0.02

0.17
0.0
0.0
0.0

Scree

Saturation = .50

0.65
0.53
1.02
0.60

Saturation = .80

0.33
0.17
0.21
0.38

Kl

7.10
8.52

15.92
17.32

1.68
1.40
3.02
2.47

BA

-1.50
-3.15
-0.7

0.13

2.93
-1.23

5.15
3.77

BB

-2.67
-3.45
-1.07

0.37

2.17
-1.97

4.00
2.72

BC

-2.77
-3.48
-1.48

0.47

2.10
-2.08

3.87
2.62

Note. BA, BB, and BC = three levels of Bartlett's chi-square test (.05, .001, and .0005, respectively). Kl = Kaiser's eigenvalue greater than unity rule.
MAP = minimum average partial. P = a set of variables. PA = parallel analysis. P/MJC = the average number of variables per major component.
Scree = Cattell's scree test.

of variables per MJC (Table 2), and pattern complexity (Tables
3 and 4) will be summarized within each level of P and SAT.
Table 5 presents the proportion of each method's estimates of
MJC that deviated a set amount from the population value.

Table 1 presents the means of the difference between each
method's estimate of MJC and the known MJC for different
sample sizes when P = 36 and 72 and the component saturation
is .50 and .80. Table 1, therefore, summarizes results collapsed
across all six levels of pattern complexity and both levels of the
number of variables per MJC to focus on the impact of sample
size. Each of the eight rows of differences in Table I summarized
60 observations. Tables 1-4 follow essentially the same format.
We therefore give a detailed description only for Table 1.

The first row of Table I presents the mean difference of each
method's estimate of MJC from the known value when P = 36,
the saturation was .50 and n = 72. Under these conditions, the
MAP method produced a mean difference score (d) o f — 1.08.
an underestimation. The PA method produced a much smaller

underestimation, -0.05. The scree (0.50) and Kl (8.32) methods
both overestimated the criterion, with Kl providing a very large
overestimation. The results of the Bartlett test led to underesti-
mations (-2.87. -3.92. and -3.98). The increase in n from 72
to 180 is reflected in row 2. It appeared to have had minor effects
on the MAP, PA, and the SCREE method. The Kl and Bartlett
methods show some improvement at the higher sample size. Rows
3 and 4 of Table 1 present the mean differences for each method
when P = 72 and N = 144 and 360. The MAP and PA methods
were again minimally influenced by sample size. The increase
in P improved the performance of MAP, PA, and the Bartlett
lest while worsening that of scree and. especially, Kl. Rows 5-
8 of Table 1 present the mean differences for each method when
P equaled 36 and 72, and the saturation was .80. All the methods
showed improvement at this higher level of saturation. Although
not present in the tables, it should be noted that the standard
deviation of the differences increased for all levels of the Bartlett
test (and to a lesser extent, for the K l rule as well) at higher

Table 3
Means of the Difference From the Number of Population Major Components at Different Levels of Pattern Complexity

Complexity

Method

MAP PA Scree Kl BA BB BC

1 36
72

2 36
72

3 36
72

4 36
72

5 36
72

6 36
72

-0.30
0.0

-0.50
-0.05
-0.80
-0.95
-1.60
-0.10
-2.05
-0.10
-1.50
-1.45

0.0
0.0

-0.10
0.05

-0.10
-0.20
0.0
0.30

-0.25
0.20
0.20

-0.10

0.38
0.82
0.88
1.18
0.50
0.40
0.38
1.00
0.58
0.90
0.85
0.35

7.15
15.95
7.35
16.00
7.30
15.90
8.45
17.15
8.20
17.15
8.40
17.50

-0.90
-0.25
-1.00
-0.15
-1.20
-0.60
-1.55
-0.45
-1.30
-0.40
-1.30
-0.70

-1.15 -1.20
-0.60 -0.75
-1.40 -1.45
-0.60 -0.65
-1.40
-1.00
-1.85
-0.95
-1.85
-0.85
-1.70
-1.20

.55

.10

.90

.00

.90

.00

.75

.25

Note. Saturation = .50. BA, BB, and BC = three levels of Bartlett's chi-square test (.05, .001, and .0005, respectively). Kl = Kaiser's eigenvalue greater
than unity rule. MAP = minimum average partial. P = a set of variables. PA = parallel analysis. Scree = Cattell's scree test.
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Table 4
Means of the Difference From the Number of Population Major Components at Different Levels of Pattern Complexity

Complexity

Method

MAP PA Scree Kl BA BB BC

1

2

3

4

5

6

36
72
36
72
36
72
36
72
36
72
36
72

0.0
0.0
0.20
0.05
0.0
0.0
0.0
0.0
0.05
0.0
0.05
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

-0.05
0.0

0.12
0.12
0.25
0.18
0.10
0.0
0.32
1.05
0.32
0.40
0.38
0.0

0.15
0.0
0.15
0.35
0.10
0.05
2.90
5.40
2.85
5.40
3.10
5.25

0.05
0.05
0.30
1.70
0.05
0.05
3.20
5.85
4.55
7.95
3.45
7.60

0.0
0.0
0.10
0.90
0.0
0.0
2.70
5.30
3.80
7.10
3.00
6.85

0.0
0.0
0.0
0.80
0.0
0.0
2.50
5.20
3.65
6.80
2.90
8.65

Note. Saturation = .80. BA, BB, and BC = three levels of Bartlett's chi-square test (.05, .001, and .0005, respectively). Kl = Kaiser's eigenvalue greater
than unity rule. MAP = minimum average partial. P = a set of variables. PA = parallel analysis. Scree = Cattell's scree test.

saturation and at higher sample sizes. The three levels of the
Bartlett test also retained more components at a higher sample
size. This led to a larger overestimation at BA and a switch from
under- to overestimation at BB and BC.

The KI method performed slightly better at the higher sample
size at both levels of component saturation. The MAP and PA
methods were minimally influenced by the sample size change
at both levels of component saturation and number of variables.
When the saturation was .50 and P = 72, the scree method showed
less overestimation at the higher than at the lower sample size.
This effect was not apparent when the saturation was .80.

The role of the number of variables is presented from a dif-
ferent perspective in Table 2, which summarizes the results for

each average number of variables per MJC (P/MJC) when P
equaled 36 and 72 and the saturation was .50 and .80. At both
levels of SAT, MAP, PA, and scree performed more accurately
and consistently when the average number of variables per MJC
was higher. The Kl showed an increased overestimation when
P/MJC increased and the saturation was .50 and a decreased
overestimation when f/MJC increased and the saturation was
.80. The Bartlett test consistently showed a decrease in the num-
ber of components retained as P/MJC increased, except when
P = 72 and SAT = .50.

Tables 3 and 4 present a summary of the methods' perfor-
mance when P equaled 36 and the saturation was .50 or .80 at
each of six levels of pattern complexity. The results are collapsed

Table 5
Percentage of Each Method's Estimate Deviating a Set Amount From the Number of Population Major Components

Deviation

±3
+2
+ 1
±0

i

-2
-3

MAP

0.0
0.0
1.6

67.5
9.2
8.0

13.8

PA

0.0
1.2
9.2

84.2
3.4
1.7
0.0

Scree

Saturation =

6.7
18.0
27.5
41.7
4.6
1.6
0.0

Method

Kl

.50
100.0

0.0
0.0
0.0
0.0
0.0
0.0

BA

0.8
2.9
6.2

33.8
17.9
7.9

30.4

BB

0.0
0.4
0.8

25.0
18.8
12.0
42.9

BC

0.0
0.0
0.7

21.5
21.8
11.15
44.5

Saturation = .80

±3
+2
+ 1
±0
-1

2

1

0.0
0.0
2.9

97.1
0.0
0.0
0.0

0.0
0.0
0.0

99.6
0.4
0.0
0.0

2.9
3.3

21.6
71.2
0.0
0.4
0.4

43.4
6.6
6.2

43.8
0.0
0.0
0.0

42.9
2.5

11.7
27.1

3.4
3.4
9.2

32.5
7.9
2.0

37.5
3.4
3.8

12.9

31.6
8.4
2.0

37.5
3.4
2.1

12.0

Note. BA, BB, and BC = three levels of Bartlett's chi-square test (.05, .001, and .0005, respectively). Kl = Kaiser's eigenvalue greater than unity rule.
MAP = minimum average partial. PA = parallel analysis. Scree = Cattell's scree test.
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across both levels of sample size and P/MJC so that each level

of complexity represents 20 observations. The levels of com-

plexity are denned above.

The range of pattern complexity affected the methods differ-

ently. Although the methods tended to perform best at Com-

plexity Level 1, they had different worst cases. In Table 3, when

the saturation was .50, the worst cases were MAP at Level 5,

P = 36; PA at Level 4, P = 72; scree at Level 2; Kl and the

Bartlett test at Levels 4-6 at both P = 36 and 72. As a comparison

of Tables 3 and 4 indicates, MAP, PA, scree, and Kl showed

substantial improvement at all levels of complexity when the

saturation was .80. At this saturation level, PA slightly under-

estimated at Complexity Level 6. The MAP slightly overestimated

at Complexity Levels 2, 5, and 6. At P = 36, scree slightly over-

estimated at all levels of complexity, and Level 6 resulted in its

largest overestimation. At P = 72, scree overestimated the most

at Level 4. The Bartlett test overestimated slightly or not at all at

Levels 1-3 but did overestimate at Levels 4-6. The Kl method

markedly overestimated at Complexity Levels 4-6. Levels 4-6

all contain unique variables.

A general overview of the performance of the different methods

may be gained by calculating the percentage of times each meth-

od's estimate deviated a set amount from the criterion. Although

Pand saturation appear to have had the most substantial impact

on the methods, the percentages were computed at each level of

saturation only. The effects of P are strongest on KI and the

Bartlett test and are clear from the tables above. The impact of

saturation appears to allow a clear differentiation between the

remaining methods. Deviations of more than 3 were collapsed

for simplicity of presentation. Differences of zero indicate ac-

curate estimates. These percentages are presented in Table 5.

At both levels of saturation PA was clearly the most frequently

accurate method, followed by MAP and scree. The tendency of

K1 to overestimate was marked. The KI method never under-

estimated. The Bartlett test was quite inaccurate and variable at

both levels of saturation.

Discussion

The question of interest in this study was the ability of five

decision methods to estimate the number of major components

present in the population correlation matrices given only the

generated sample matrices. The difference between the estimated

number and the denned number of major components served

as the primary dependent variable in this simulation study. The

standard deviation of the difference scores gave further infor-

mation about each method's consistency. Finally, the percentage

of decisions at specified levels of deviation from the criterion

were also calculated.

The five decision rules we used were the eigenvalue greater

than 1 rule (Kl), Bartlett's test, the scree test, the minimum

average partial (MAP) method, and the parallel analysis (PA)

method. We examined the performance of the live methods for
determining the number of components in 10 samples drawn

from each of 48 simulated population correlation matrices over

a range of component pattern complexity. The least complex

pattern replicated earlier work (Zwick & Velicer, 1982) and in-

cluded only equal numbers of variables per component and no

unique or complex variables. Component pattern complexity

was varied by modifying this clear, least complex case with com-

binations that included: (a) complex variables, (b) equal and

unequal numbers of variables per component, and (c) unique

variables. We feel that the resultant six levels of complexity cover

an adequately wide range to permit a test of the relative strengths

and weaknesses of the decision methods examined. We defined

major components (MJCs) as those having more than three sub-

stantial loadings and an eigenvalue greater than or equal to 1.0

at the population level. Two types of minor components (MNCs)

were denned. We feel that these complex patterns expand on the

formal model and incorporate cases likely to be encountered in

real data analyses.

The Kl rule consistently overestimated the number of major

components. It never underestimated. This finding is consistent

with those of Cattell and Jaspers (1967), Linn (1968), Yeomans

and Colder (1982). and Zwick and Velicer (1982). At a com-

ponent saturation of .50, the number retained often fell in the

one-third to one-half of P range discussed by Gorsuch (1983).

As the number of variables increased, so did the number of com-

ponents retained. The Kl method retained more components

when unique variables were included in the population pattern.

These findings are clearly contrary to those of Humphreys (1964)

and Mote (1970), who concluded that the K1 method sometimes

retained too few components. Their data may represent a type

of component complexity not included in this study or their

original judgments of the number of components in their data

sets may have been overestimates. Given the apparent functional

relation of the number of components retained by Kl to the

number of original variables and the repeated reports of the

method's inaccuracy, we cannot recommend the Kl rule

for PCA.

The results and conclusions about the K1 rule presented here

are consistant both with previous empirical studies and the theo-

retical criticism of the method. However, our conclusions are in

sharp contrast to many recent textbooks in which Kl is either

the preferred or the only method discussed (Anfi & Clark, 1984;

Everitt & Dunn, 1983; Johnson & Wichern, 1982; Marascuilo

& Levin, 1983). For example, Marascuilo & Levin (1983) are

typical when they first discuss it with a caution ("In most cases,

Kaiser's rule is quite workable, bu t . . ."; p. 237), but in a later

summary, flatly recommend it ("It is one we recommend"; p.

260). The use of the Kl rule as the default value in some of the

standard computer packages (BMDP, SPSS-X, SAS) is an implicit

endorsement of the procedure, particularly to naive users. This

pattern of explicit endorsement by textbook authors and implicit

endorsement by computer packages, contrasted with empirical

findings that the procedure is very likely to provide a grossly

wrong answer, seems to guarantee that a large number of incorrect

findings will continue to be reported.

The Bartlett test's performance was the most variable of those

examined. In addition to variability, it was sensitive to a number

of influences. Increases in sample size. P. and SAT, as well as the

use of conservative alpha levels and the presence of unique vari-
ables all lead to the retention of more components. Although

examination of different alpha levels led to fewer or greater num-

bers of components retained, the accuracy and consistency of

ihe method did not appear to be markedly improved by adjusting

alpha levels with sample size as was suggested by Horn and Engs-

trom (1979). Other factors present in this study appear to have
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had a greater influence on the performance of the test, across

alpha levels, than did sample size alone.

The Bartlett test is accurate in answering statistical questions

concerning the equality of eigenvalues (Bartlett, 1950, 1951).

Researchers inclined to examine minor components, particularly

early in the course of exploratory analysis, may find the method

helpful. However, we cannot recommend it as a general method

of determining the number of major components to retain. Its

tendency to retain both minor and trivial components might

reflect the basic logic of the test. Only error should be expected

to meet the requirement of equal eigenvalues. However, most

researchers would not find minor or trivial components to be

consistent with their implicit definition of a factor or component

that is worthy of retention. Therefore, although the test works

correctly, it may not be appropriate for general applications.

We did not investigate the maximum likelihood test that as-

sumes the factor analysis model. The maximum likelihood test

is based on a logic identical to that of the Bartlett test. Empirical

investigations have found the same pattern of results with the

likelihood test as we have reported with the Bartlett lest (Hakstian

et al., 1982; M. B. Richman, personal communication, October

14, 1983). Again, the problem may be an inappropriate appli-

cation of the test, rather than the performance of the test per se.

The scree test had moderate overall reliability when the mean

of two trained raters was used. The correlation of the mean of

those raters' decisions with an expert judge indicated fair overall

agreement. Reports of rater reliability on the scree test have

ranged from very good (Cattell & Jaspers, 1967) to quite poor

(Crawford & Koopman. 1979). This range may reflect either the

training or the task complexity across research projects. The

raters in this study showed greater agreement at higher than at

lower component saturation levels. Perhaps more importantly,

the interrater reliability of the scree test had a fairly wide range

across levels of complexity. The moderate reliability of the scree

test is very problematic for the applied researcher. Unreliability

at this point in the analysis may well expose a study to otherwise

avoidable experimenter bias. In any case, applied researchers

and reviewers should note that reliability questions always arise

in any use of the scree test.

In general, the scree test was more accurate and less variable

than either the Kl method or the Bartletl test. It was more ac-

curate and less variable at the higher level of component satu-

ration. Larger sample sizes also improved its accuracy when P

equaled 72 and component saturation was .50. Sample size had

no appreciable effect at other levels of Par component saturation.

This effect of larger sample size is consistent with those reported

elsewhere (Cliff & Pennell, 1967; Linn, 1968; Zwick & Velicer.

1982). The accuracy of the scree test was not affected by an

increase in the number of variables examined. An increase in

the average number of variables per component did not affect

its accuracy. In an earlier study (Zwick & Velicer, 1982) with

noncomplex matrices, the scree test performed better than MAP

when the major components contained six or fewer variables and

the saturation was low. This trend can be observed again under

more complex conditions.

The scree test tended to overestimate rather than to under-

estimate when it deviated from the criterion value. As reflected

in Table 5, it was accurate about 57% of the time. When it was

in error, 90% of the errors were overestimations. The scree test

appeared to be most variable at the low level of component sat-

uration or when unique or complex variables were present. Nev-

ertheless, even given its variability and tendency toward over-

estimation, the scree test seldom led to the retention of more

than two components over the criterion value. Many experienced

investigators routinely examine one or two components above

and below the estimate given by their favorite decision method.

This practice, coupled with good judgment concerning inter-

pretability, may often result in appropriate solutions when the

scree test is used. This optimistic assertion notwithstanding, the

ever-present question of rater reliability, the tendency to over-

estimate, and the apparent increased variability in the common

case of unique or complex variables all argue against the exclusive

use of the scree test. Given these drawbacks and the availability

of other clearly superior methods, we can no longer recommend

the scree test as the method of choice for determining the number

of components in PCA.

In general, the MAP method was more often accurate and

less variable than the Kl, Bartlett, or scree methods. It showed

an overall tendency to underestimate the criterion. The MAP

method was most accurate at the higher level of component sat-

uration or when the average number of variables per component

was large. Its performance was not markedly influenced by sam-

ple size within the range examined in this study. The MAP

method was quite accurate under many conditions and, when

accurate, showed little variability. In cases representing both a

low level of saturation and a low number of variables per com-

ponent, the MAP method consistently underestimated the num-

ber of major components. The combination of these influences

appears to result in a component that accounts for less variance

than those components containing only a unique variable. The

MAP method will not retain a unique variable component and

therefore, fails to pick up less well-identified major components.

The MAP method gave results within ±1 of the criterion be-

tween 78% (component saturation = .50) and 100% (component

saturation = .80) of the time. When it was in error, the MAP

method tended to underestimate. Approximately 90% of the

MAP errors were underestimations.

The MAP method provides an unequivocal stopping point. It

is tied to the concept of parsimony by directly rejecting com-

ponents identified by only one variable. It is quite accurate when

component saturation is high or when there is an average of eight

or more variables per component. Researchers wishing to ignore

relatively small major components should use MAP as a primary

method of determining the number of components to retain.

The PA method was consistently accurate. It was typically the

most accurate method at each level of complexity examined.

The average deviation of PA from the criterion did not exceed

0.30 under any condition examined. The difference scores of PA

showed less variability than those of any other rule. Increases in

sample size, component saturations, and the number of variables

per component improved PA's performance. We also found some

evidence of overestimation due to minor components.

Overall, the PA method was the most frequently accurate

method examined. It gave results within ±1 of the criterion for

between 97% (component saturation = .50) and 100% (com-

ponent saturation = .80) of the cases examined. When PA was

in error, it showed a slight tendency toward overestimation. Ap-

proximately 65% of the PA method's errors were overestimations.
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The accuracy of ihe PA method in this study is consistent with

the CFA results reported by Humphreys and Montanelli (1975).

A major drawback in the applied use of PA is the necessity of

generating a large set of random correlation matrices at the par-

ticular combination of P and sample sign under consideration.

The prediction equation developed for principal axis factor anal-

ysis (Montanelli & Humphreys, 1976) is not appropriate for PCA.

However, Bobko and Schemmer (1984) recently proposed a pre-

diction equation appropriate for component analysis. Further

evaluation of this and other equations of this type over a wide

range of conditions is needed.

In summarizing the results of the present study it is useful to

postulate a further division of the MJCs. We label those com-

ponents that involve a small number of variables and low satu-

ration poorly denned components (PDCs). We label components

with either a large number of variables or high saturation as well-

defined components (WDFs). Poorly denned components do not

possess any "marker" variables, that is, variables with high load-

ings on that component. Investigators typically use such marker

variables as denning variables in interpreting the component.

Guadagnoli and Velicer (in press) found that PDCs were unlikely

to accurately replicate even in fairly large samples. The combi-

nation of the two issues, difficult interpretability and questionable

replicability, make the retention of these components problem-

atic.

The two most accurate methods, MAP and PA, provided di-

vergent results primarily when PDCs were present. An a priori

decision about whether or not to attempt to extract and retain

such components may dictate whether MAP or PA is the method

of choice. Lacking such a decision, a researcher may want to

examine all solutions in a set bracketed by the MAP and PA

estimates. Rotational criteria and interpretability may be the basis

for a final decision.

Previous studies have examined subsets of these rules under

some of the conditions examined here. In those areas in which

the simulated situations were similar, the results of Linn (1968),

Humphreys and Montanelli (1975), Cartel! and Vogelman (1977).

Hakstian et al. (1982), Zwick and Velicer (1982). and Reddon

(in press) were confirmed and expanded.

Within the limitations imposed by the simulation approach,

the results of this study, paired with previously reported work,

permit some conclusions concerning methods of determining

the number of components in real data sets. There is no evidence

supporting the continued use of Kl or the Bartlett test as exclu-

sive, primary methods to determine the number of major com-

ponents to retain. These methods should not be used. The scree

procedure has been reported to be relatively accurate. This study

is consistent with those reports but indicates that the method is

too variable and too likely to overestimate to use as the sole

decision method. However, the scree test may still be useful for

initial estimates or as a complementary method used in con-

junction with PA or MAP. The MAP method was generally quite

accurate and consistent when the component saturation was high

or the component was denned by more than six variables. The

MAP did not retain PDCs. The PA method was consistently

accurate; it retained PDCs and showed a slight tendency to over-

estimate. The general application ofthe PA method is problematic

at this time because programs needed for its application are not

widely available. Assuming that this problem can be overcome.

either PA or MAP is the method of choice, with many situations
arising in which both should be used.
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